(chat) C:\Users\DELL\OneDrive\Desktop\chat-ecom>rasa train
C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\shared\utils\io.py:97: UserWarning: Action 'utter_chitchat' is listed as a response action in the domain file, but there is no matching response defined. Please check your domain.
More info at https://rasa.com/docs/rasa/responses
C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\shared\utils\io.py:97: UserWarning: Action 'utter_faq' is listed as a response action in the domain file, but there is no matching response defined. Please check your domain.
More info at https://rasa.com/docs/rasa/responses
2021-10-07 14:09:50 INFO rasa.model - Data (core-config) for Core model section changed.
2021-10-07 14:09:50 INFO rasa.model - Data (nlu-config) for NLU model section changed.
2021-10-07 14:09:50 INFO rasa.model - Data (nlg) for NLG responses section changed.
Training NLU model...
C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\utils\train_utils.py:646: UserWarning: constrain_similarities is set to `False`. It is recommended to set it to `True` when using cross-entropy loss. It will be set to `True` by default, Rasa Open Source 3.0.0 onwards.
category=UserWarning,
2021-10-07 14:09:55 INFO rasa.shared.nlu.training_data.training_data - Training data stats:
2021-10-07 14:09:55 INFO rasa.shared.nlu.training_data.training_data - Number of intent examples: 203 (14 distinct intents)
2021-10-07 14:09:55 INFO rasa.shared.nlu.training_data.training_data - Found intents: 'faq', 'order_shoes', 'greet', 'product_updates', 'whats_your_name', 'order_status', 'deny', 'return', 'chitchat', 'product_stock', 'affirm', 'order_cancel', 'out_of_scope', 'inform'
2021-10-07 14:09:55 INFO rasa.shared.nlu.training_data.training_data - Number of response examples: 66 (11 distinct responses)
2021-10-07 14:09:55 INFO rasa.shared.nlu.training_data.training_data - Number of entity examples: 15 (2 distinct entities)
2021-10-07 14:09:55 INFO rasa.shared.nlu.training_data.training_data - Found entity types: 'color', 'negation'
2021-10-07 14:09:55 INFO rasa.nlu.model - Starting to train component WhitespaceTokenizer
2021-10-07 14:09:55 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:09:55 INFO rasa.nlu.model - Starting to train component RegexFeaturizer
2021-10-07 14:09:55 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:09:55 INFO rasa.nlu.model - Starting to train component LexicalSyntacticFeaturizer
2021-10-07 14:09:55 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:09:55 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer
2021-10-07 14:09:55 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 325 vocabulary items were created for text attribute.
2021-10-07 14:09:55 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 95 vocabulary items were created for response attribute.
2021-10-07 14:09:56 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:09:56 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer
2021-10-07 14:09:56 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 2328 vocabulary items were created for text attribute.
2021-10-07 14:09:56 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 792 vocabulary items were created for response attribute.
2021-10-07 14:09:56 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:09:56 INFO rasa.nlu.model - Starting to train component DIETClassifier
Epochs: 100%|████████████████| 100/100 [02:06<00:00, 1.27s/it, t_loss=1.59, i_acc=1, e_f1=0.941]
2021-10-07 14:12:03 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:12:03 INFO rasa.nlu.model - Starting to train component EntitySynonymMapper
2021-10-07 14:12:03 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:12:03 INFO rasa.nlu.model - Starting to train component ResponseSelector
Epochs: 100%|████████████████████████████| 100/100 [00:13<00:00, 7.56it/s, t_loss=80.7, r_acc=1]
2021-10-07 14:12:16 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:12:16 INFO rasa.nlu.model - Starting to train component ResponseSelector
Epochs: 100%|████████████████████████████| 100/100 [00:15<00:00, 6.38it/s, t_loss=5.64, r_acc=1]
2021-10-07 14:12:32 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:12:32 INFO rasa.nlu.model - Starting to train component FallbackClassifier
2021-10-07 14:12:32 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:12:32 INFO rasa.nlu.model - Starting to train component DucklingEntityExtractor
2021-10-07 14:12:32 INFO rasa.nlu.model - Finished training component.
2021-10-07 14:12:35 INFO rasa.nlu.model - Successfully saved model into 'C:\Users\DELL\AppData\Local\Temp\tmpjrmch2pi\nlu'
NLU model training completed.
Training Core model...
Processed story blocks: 100%|██████████████████████| 8/8 [00:00<00:00, 1601.49it/s, # trackers=1]
Processed story blocks: 100%|███████████████████████| 8/8 [00:00<00:00, 333.31it/s, # trackers=8]
Processed story blocks: 100%|███████████████████████| 8/8 [00:00<00:00, 38.10it/s, # trackers=50]
Processed story blocks: 100%|███████████████████████| 8/8 [00:00<00:00, 31.13it/s, # trackers=50]
Processed rules: 100%|███████████████████████████| 20/20 [00:00<00:00, 1669.01it/s, # trackers=1]
Processed trackers: 100%|████████████████████████████| 8/8 [00:00<00:00, 800.00it/s, # action=32]
Processed actions: 32it [00:00, 80.80it/s, # examples=32]
Processed trackers: 100%|██████████████████████| 508/508 [00:00<00:00, 1154.55it/s, # action=584]
Epochs: 0%| | 0/100 [00:00<?, ?it/s]Traceback (most recent call last):
File "C:\Users\DELL\anaconda3\envs\chat\lib\runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:\Users\DELL\anaconda3\envs\chat\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\DELL\anaconda3\envs\chat\Scripts\rasa.exe\__main__.py", line 7, in <module>
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\__main__.py", line 117, in main
cmdline_arguments.func(cmdline_arguments)
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\cli\train.py", line 59, in <lambda>
train_parser.set_defaults(func=lambda args: run_training(args, can_exit=True))
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\cli\train.py", line 103, in run_training
finetuning_epoch_fraction=args.epoch_fraction,
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\api.py", line 124, in train
loop,
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\utils\common.py", line 296, in run_in_loop
result = loop.run_until_complete(f)
File "C:\Users\DELL\anaconda3\envs\chat\lib\asyncio\base_events.py", line 583, in run_until_complete
return future.result()
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\model_training.py", line 119, in train_async
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\model_training.py", line 299, in _train_async_internal
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\model_training.py", line 361, in _do_training
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\model_training.py", line 556, in _train_core_with_validated_data
model_to_finetune=model_to_finetune,
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\core\train.py", line 70, in train
agent.train(training_data, **additional_arguments)
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\core\agent.py", line 754, in train
training_trackers, self.domain, interpreter=self.interpreter, **kwargs
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\core\policies\ensemble.py", line 207, in train
trackers_to_train, domain, interpreter=interpreter, **kwargs
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\core\policies\ted_policy.py", line 690, in train
self.run_training(model_data, label_ids)
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\core\policies\ted_policy.py", line 647, in run_training
shuffle=False, # we use custom shuffle inside data generator
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\tensorflow\python\keras\engine\training.py", line 108, in _method_wrapper
return method(self, *args, **kwargs)
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\rasa\utils\tensorflow\temp_keras_modules.py", line 191, in fit
tmp_logs = train_function(iterator)
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\tensorflow\python\eager\def_function.py", line 780, in __call__
result = self._call(*args, **kwds)
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\tensorflow\python\eager\def_function.py", line 840, in _call
return self._stateless_fn(*args, **kwds)
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\tensorflow\python\eager\function.py", line 2829, in __call__
return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\tensorflow\python\eager\function.py", line 1848, in _filtered_call
cancellation_manager=cancellation_manager)
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\tensorflow\python\eager\function.py", line 1924, in _call_flat
ctx, args, cancellation_manager=cancellation_manager))
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\tensorflow\python\eager\function.py", line 550, in call
ctx=ctx)
File "C:\Users\DELL\anaconda3\envs\chat\lib\site-packages\tensorflow\python\eager\execute.py", line 60, in quick_execute
inputs, attrs, num_outputs)
tensorflow.python.framework.errors_impl.InvalidArgumentError: reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero
[[{{node cond_1/then/_82/cond_1/concatenate_sparse_dense_features_active_loop_sentence/sparse_to_dense.active_loop_sentence/SparseReshape}}]] [Op:__inference_train_function_65875]
Function call stack:
train_function