When I trained the model on my local PC, it ran perfectly. However, when I tried running it in a Docker container after installing all dependencies, I encountered a fallback error everytime.
Here is the version details: Rasa Version : 3.6.20 Minimum Compatible Version: 3.5.0 Rasa SDK Version : 3.6.2 Python Version : 3.8.18
Here is my config file:
recipe: default.v1
# The assistant project unique identifier
# This default value must be replaced with a unique assistant name within your deployment
assistant_id: 20240610-175227-regular-block
# Configuration for Rasa NLU.
language: en
policies:
- name: MemoizationPolicy
priority: 3
- name: RulePolicy
priority: 1
core_fallback_threshold: 0.3
core_fallback_action_name: "action_default_fallback"
enable_fallback_prediction: True
pipeline:
- name: SpacyNLP
model: "en_core_web_md"
- name: SpacyEntityExtractor
dimension: ["NAME"]
- name: WhitespaceTokenizer
intent_split_symbol: "+"
- name: RegexFeaturizer
- name: LexicalSyntacticFeaturizer
- name: CountVectorsFeaturizer
analyzer: word
- name: CountVectorsFeaturizer
analyzer: char_wb
min_ngram: 1
max_ngram: 4
- name: LanguageModelFeaturizer
model_name: "bert"
model_weights: "bert-base-uncased"
- name: DucklingEntityExtractor
url: "http://localhost:8000"
dimensions:
- time
- phone_number
- email
- name
- number
- name: DIETClassifier
epochs: 150
constrain_similarities: true
entity_recognition: true
entity_roles: true
entity_groups: true
- name: components.address_city_state_detector.AddressCityStateDetector
- name: RegexEntityExtractor
use_lookup_tables: true
use_regexes: true
use_word_boundaries: true
- name: EntitySynonymMapper
- name: FallbackClassifier
threshold: 0.6
ambiguity_threshold: 0.1