Hello Community!
Till now I have deployed Rasa x over EC2 and uploaded model I trained on my local machine. After upload, I checked logs for rasa-worker. Here they are:
ubuntu@ip-xxx-xx-xx-xxx:/etc/rasa$ sudo docker-compose logs rasa-worker
Attaching to rasa_rasa-worker_1
rasa-worker_1 | 2020-11-23 13:38:40 ERROR rasa.core.agent - Failed to update model. The previous model will stay loaded instead.
rasa-worker_1 | Traceback (most recent call last):
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/transformers/tokenization_utils.py", line 987, in _from_pretrained
rasa-worker_1 | local_files_only=local_files_only,
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/transformers/file_utils.py", line 260, in cached_path
rasa-worker_1 | local_files_only=local_files_only,
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/transformers/file_utils.py", line 362, in get_from_cache
rasa-worker_1 | os.makedirs(cache_dir, exist_ok=True)
rasa-worker_1 | File "/usr/local/lib/python3.7/os.py", line 213, in makedirs
rasa-worker_1 | makedirs(head, exist_ok=exist_ok)
rasa-worker_1 | File "/usr/local/lib/python3.7/os.py", line 213, in makedirs
rasa-worker_1 | makedirs(head, exist_ok=exist_ok)
rasa-worker_1 | File "/usr/local/lib/python3.7/os.py", line 223, in makedirs
rasa-worker_1 | mkdir(name, mode)
rasa-worker_1 | PermissionError: [Errno 13] Permission denied: '/.cache'
rasa-worker_1 |
rasa-worker_1 | During handling of the above exception, another exception occurred:
rasa-worker_1 |
rasa-worker_1 | Traceback (most recent call last):
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/core/agent.py", line 158, in _update_model_from_server
rasa-worker_1 | _load_and_set_updated_model(agent, model_directory, new_fingerprint)
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/core/agent.py", line 131, in _load_and_set_updated_model
rasa-worker_1 | interpreter = _load_interpreter(agent, nlu_path)
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/core/agent.py", line 90, in _load_interpreter
rasa-worker_1 | return rasa.core.interpreter.create_interpreter(nlu_path)
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/core/interpreter.py", line 33, in create_interpreter
rasa-worker_1 | return RasaNLUInterpreter(model_directory=obj)
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/core/interpreter.py", line 127, in __init__
rasa-worker_1 | self._load_interpreter()
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/core/interpreter.py", line 164, in _load_interpreter
rasa-worker_1 | self.interpreter = Interpreter.load(self.model_directory)
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/nlu/model.py", line 320, in load
rasa-worker_1 | return Interpreter.create(model_metadata, component_builder, skip_validation)
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/nlu/model.py", line 347, in create
rasa-worker_1 | component_meta, model_metadata.model_dir, model_metadata, **context
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/nlu/components.py", line 790, in load_component
rasa-worker_1 | component_meta, model_dir, model_metadata, cached_component, **context
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/nlu/registry.py", line 178, in load_component_by_meta
rasa-worker_1 | component_meta, model_dir, metadata, cached_component, **kwargs
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/nlu/components.py", line 476, in load
rasa-worker_1 | return cls(meta)
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/nlu/utils/hugging_face/hf_transformers.py", line 66, in __init__
rasa-worker_1 | self._load_model_instance(skip_model_load)
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/rasa/nlu/utils/hugging_face/hf_transformers.py", line 116, in _load_model_instance
rasa-worker_1 | self.model_weights, cache_dir=self.cache_dir
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/transformers/tokenization_utils.py", line 911, in from_pretrained
rasa-worker_1 | return cls._from_pretrained(*inputs, **kwargs)
rasa-worker_1 | File "/opt/venv/lib/python3.7/site-packages/transformers/tokenization_utils.py", line 1004, in _from_pretrained
rasa-worker_1 | raise EnvironmentError(msg)
rasa-worker_1 | OSError: Couldn't reach server at '{}' to download vocabulary files.
I am using HFTransformersNLP (huggingface Transformer) as my Language Model. Please help I am stuck.