Error in RASA Init v2.8.14

Hi, I’m using Conda virtual environment and have installed Rasa v2.8.14 and Python 3.8.0.

Encountered the following errors when initiating a new project:

(venv) PS C:\Users\DerickTeo\development> rasa init Welcome to Rasa! :robot:

To get started quickly, an initial project will be created. If you need some help, check out the documentation at Introduction to Rasa Open Source. Now let’s start! :point_down:t4:

? Please enter a path where the project will be created [default: current directory] ? Directory ‘C:\Users\DerickTeo\development’ is not empty. Continue? Yes Created project directory at ‘C:\Users\DerickTeo\development’. Finished creating project structure. ? Do you want to train an initial model? :muscle:t4: Yes Training an initial model… The configuration for policies and pipeline was chosen automatically. It was written into the config file at ‘.\config.yml’. Training NLU model… 2021-11-19 22:53:08 INFO rasa.shared.nlu.training_data.training_data - Training data stats: 2021-11-19 22:53:08 INFO rasa.shared.nlu.training_data.training_data - Number of intent examples: 69 (7 distinct intents)

2021-11-19 22:53:08 INFO rasa.shared.nlu.training_data.training_data - Found intents: ‘affirm’, ‘bot_challenge’, ‘mood_great’, ‘greet’, ‘deny’, ‘goodbye’, ‘mood_unhappy’ 2021-11-19 22:53:08 INFO rasa.shared.nlu.training_data.training_data - Number of response examples: 0 (0 distinct responses) 2021-11-19 22:53:08 INFO rasa.shared.nlu.training_data.training_data - Number of entity examples: 0 (0 distinct entities) 2021-11-19 22:53:08 INFO rasa.nlu.model - Starting to train component WhitespaceTokenizer 2021-11-19 22:53:08 INFO rasa.nlu.model - Finished training component. 2021-11-19 22:53:08 INFO rasa.nlu.model - Starting to train component RegexFeaturizer 2021-11-19 22:53:08 INFO rasa.nlu.model - Finished training component. 2021-11-19 22:53:08 INFO rasa.nlu.model - Starting to train component LexicalSyntacticFeaturizer 2021-11-19 22:53:08 INFO rasa.nlu.model - Finished training component. 2021-11-19 22:53:08 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer 2021-11-19 22:53:08 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 80 vocabulary items were created for text attribute. 2021-11-19 22:53:08 INFO rasa.nlu.model - Finished training component. 2021-11-19 22:53:08 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer 2021-11-19 22:53:08 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 697 vocabulary items were created for text attribute. 2021-11-19 22:53:08 INFO rasa.nlu.model - Finished training component. 2021-11-19 22:53:08 INFO rasa.nlu.model - Starting to train component DIETClassifier C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\utils\tensorflow\model_data.py:750: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify ‘dtype=object’ when creating the ndarray np.concatenate(np.array(f)), Epochs: 100%|██████████████████████████████████████████████| 100/100 [00:29<00:00, 3.38it/s, t_loss=1.21, i_acc=0.986] 2021-11-19 22:53:38 INFO rasa.nlu.model - Finished training component. 2021-11-19 22:53:38 INFO rasa.nlu.model - Starting to train component EntitySynonymMapper 2021-11-19 22:53:38 INFO rasa.nlu.model - Finished training component. 2021-11-19 22:53:38 INFO rasa.nlu.model - Starting to train component ResponseSelector 2021-11-19 22:53:38 INFO rasa.nlu.selectors.response_selector - Retrieval intent parameter was left to its default value. This response selector will be trained on training examples combining all retrieval intents. 2021-11-19 22:53:38 INFO rasa.nlu.model - Finished training component. 2021-11-19 22:53:38 INFO rasa.nlu.model - Starting to train component FallbackClassifier 2021-11-19 22:53:38 INFO rasa.nlu.model - Finished training component. Traceback (most recent call last): File “C:\Users\DerickTeo.conda\envs\venv\lib\runpy.py”, line 194, in _run_module_as_main return run_code(code, main_globals, None, File “C:\Users\DerickTeo.conda\envs\venv\lib\runpy.py”, line 87, in run_code exec(code, run_globals) File "C:\Users\DerickTeo.conda\envs\venv\Scripts\rasa.exe_main.py", line 7, in File "C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa_main.py", line 118, in main cmdline_arguments.func(cmdline_arguments) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\cli\scaffold.py”, line 235, in run init_project(args, path) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\cli\scaffold.py”, line 130, in init_project print_train_or_instructions(args, path) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\cli\scaffold.py”, line 69, in print_train_or_instructions training_result = rasa.train(domain, config, training_files, output) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\api.py”, line 109, in train return rasa.utils.common.run_in_loop( File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\utils\common.py”, line 296, in run_in_loop result = loop.run_until_complete(f) File “C:\Users\DerickTeo.conda\envs\venv\lib\asyncio\base_events.py”, line 616, in run_until_complete return future.result() File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\model_training.py”, line 108, in train_async return await _train_async_internal( File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\model_training.py”, line 288, in _train_async_internal await _do_training( File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\model_training.py”, line 334, in _do_training model_path = await _train_nlu_with_validated_data( File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\model_training.py”, line 758, in _train_nlu_with_validated_data await rasa.nlu.train.train( File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\nlu\train.py”, line 114, in train persisted_path = trainer.persist( File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\nlu\model.py”, line 259, in persist update = component.persist(file_name, dir_name) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py”, line 1021, in persist self.model.save(str(tf_model_file)) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\rasa\utils\tensorflow\models.py”, line 392, in save self.save_weights(model_file_name, overwrite=overwrite, save_format=“tf”) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\keras\engine\training.py”, line 2258, in save_weights self._trackable_saver.save(filepath, session=session, options=options) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\tensorflow\python\training\tracking\util.py”, line 1262, in save save_path, new_feed_additions = self._save_cached_when_graph_building( File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\tensorflow\python\training\tracking\util.py”, line 1208, in _save_cached_when_graph_building save_op = saver.save(file_prefix, options=options) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\tensorflow\python\training\saving\functional_saver.py”, line 300, in save return save_fn() File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\tensorflow\python\training\saving\functional_saver.py”, line 274, in save_fn sharded_saves.append(saver.save(shard_prefix, options)) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\tensorflow\python\training\saving\functional_saver.py”, line 83, in save return io_ops.save_v2(file_prefix, tensor_names, tensor_slices, tensors) File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\tensorflow\python\ops\gen_io_ops.py”, line 1695, in save_v2 return save_v2_eager_fallback( File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\tensorflow\python\ops\gen_io_ops.py”, line 1716, in save_v2_eager_fallback _result = _execute.execute(b"SaveV2", 0, inputs=_inputs_flat, attrs=_attrs, File “C:\Users\DerickTeo.conda\envs\venv\lib\site-packages\tensorflow\python\eager\execute.py”, line 59, in quick_execute tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.ResourceExhaustedError: Failed to rename: C:\Users\DERICK~1\AppData\Local\Temp\tmp1o2wd7ci\nlu\component_5_DIETClassifier.tf_model_temp/part-00000-of-00001.data-00000-of-00001.tempstate11337403341004488306 to: C:\Users\DERICK~1\AppData\Local\Temp\tmp1o2wd7ci\nlu\component_5_DIETClassifier.tf_model_temp/part-00000-of-00001.data-00000-of-00001 : A device attached to the system is not functioning. ; Too many links [Op:SaveV2]

@delex80 can you please the screenshot whilst typing rasa --version

Hello @nik202 , here’s the screenshot.

@delex80 can you please downgrade to more stable version i.e rasa==2.8.1 and rasa-sdk==2.8.1 ? and then try rasa init ?