from rasa_nlu.training_data import load_data
from rasa_nlu.config import RasaNLUModelConfig
from rasa_nlu.model import Trainer
from rasa_nlu import config
training_data = load_data(“nlu.md”)
trainer = Trainer(config.load(“config.yml”))
interpreter = trainer.train(training_data)
model_directory = trainer.persist(“./models/nlu”, fixed_model_name=“current”)
from rasa_core.policies import FallbackPolicy, KerasPolicy, MemoizationPolicy
from rasa_core.agent import Agent
fallback = FallbackPolicy(fallback_action_name=“utter_unclear”,
core_threshold=0.2,
nlu_threshold=0.1)
agent = Agent(‘domain.yml’, policies=[MemoizationPolicy(), KerasPolicy(), fallback])
training_data = agent.load_data(‘stories.md’)
agent.train(
training_data,
validation_split=0.0,
epochs=200
)
agent.persist(‘models/dialogue’)
#Starting the Bot
from rasa_core.agent import Agent
agent = Agent.load(‘models/dialogue’, interpreter=model_directory)
print(“Your bot is ready to talk! Type your messages here or send ‘stop’”)
while True:
a = input()
if a == ‘stop’:
break
responses = agent.handle_message(a)
for response in responses:
print(response[“text”])
print(interpreter.parse(a))
config.yml (499 Bytes)
domain.yml (2.3 KB)
nlu.md (1.4 KB)
stories.md (673 Bytes)
this is the code
@Juste please help