Sorry, paste the wrong one, let me re-paste
the config
version: "2.0"
language: zh
pipeline:
- name: HFTransformersNLP
model_name: bert
model_weights: bert-base-chinese
- name: JiebaTokenizer
- name: LanguageModelFeaturizer
- name: CountVectorsFeaturizer
- name: CountVectorsFeaturizer
analyzer: char_wb
min_ngram: 1
max_ngram: 6
- name: DIETClassifier
epochs: 300
constrain_similarities: true
entity_recognition: false
evaluate_on_number_of_examples: 5000
evaluate_every_number_of_epochs: 5
tensorboard_log_directory: "./tensorboard"
tensorboard_log_level: "epoch"
ranking_length: 5
number_of_negative_examples: 20
policies:
- name: MemoizationPolicy
- name: TEDPolicy
max_history: 5
epochs: 100
- name: RulePolicy
the logs
2022-02-04 01:24:51 INFO root - Generating grammar tables from /usr/lib/python3.7/lib2to3/Grammar.txt
2022-02-04 01:24:51 INFO root - Generating grammar tables from /usr/lib/python3.7/lib2to3/PatternGrammar.txt
No stories present. Just a Rasa NLU model will be trained.
Training NLU model...
2022-02-04 01:25:31 INFO numexpr.utils - NumExpr defaulting to 4 threads.
2022-02-04 01:25:31 INFO transformers.file_utils - PyTorch version 1.10.0+cu111 available.
2022-02-04 01:25:31 INFO transformers.file_utils - TensorFlow version 2.6.3 available.
2022-02-04 01:25:31 INFO transformers.tokenization_utils - loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt from cache at /root/.cache/torch/transformers/8a0c070123c1f794c42a29c6904beb7c1b8715741e235bee04aca2c7636fc83f.9b42061518a39ca00b8b52059fd2bede8daa613f8a8671500e518a8c29de8c00
2022-02-04 01:25:31 INFO transformers.configuration_utils - loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json from cache at /root/.cache/torch/transformers/8a3b1cfe5da58286e12a0f5d7d182b8d6eca88c08e26c332ee3817548cf7e60a.f12a4f986e43d8b328f5b067a641064d67b91597567a06c7b122d1ca7dfd9741
2022-02-04 01:25:31 INFO transformers.configuration_utils - Model config BertConfig {
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"directionality": "bidi",
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"type_vocab_size": 2,
"vocab_size": 21128
}
2022-02-04 01:25:31 INFO transformers.modeling_tf_utils - loading weights file https://cdn.huggingface.co/bert-base-chinese-tf_model.h5 from cache at /root/.cache/torch/transformers/86a460b592673bcac3fe5d858ecf519e4890b4f6eddd1a46a077bd672dee6fe5.e6b974f59b54219496a89fd32be7afb020374df0976a796e5ccd3a1733d31537.h5
2022-02-04 01:25:34 INFO transformers.modeling_tf_utils - Layers from pretrained model not used in TFBertModel: ['mlm___cls', 'nsp___cls']
2022-02-04 01:25:34 INFO rasa.nlu.components - Added 'HFTransformersNLP' to component cache. Key 'HFTransformersNLP-bert-68d7c530c1c4708f5657e4ae28219570'.
2022-02-04 01:25:34 INFO rasa.nlu.components - Added 'LanguageModelFeaturizer' to component cache. Key 'LanguageModelFeaturizer-None-99914b932bd37a50b983c5e7c90ae93b'.
2022-02-04 01:25:54 INFO rasa.shared.nlu.training_data.training_data - Training data stats:
2022-02-04 01:25:54 INFO rasa.shared.nlu.training_data.training_data - Number of intent examples: 30212 (803 distinct intents)
2022-02-04 01:25:54 INFO rasa.shared.nlu.training_data.training_data - Found intents: 'id3105', 'id1177', 'id4009', 'id4777', 'id3801', 'id4782', 'id2726', 'id2765', 'id1931', 'id1205', 'id710', 'id174', 'id1297', 'id4382', 'id654', 'id4992', 'id4006', 'id1500', 'id4808', 'id4939', 'id176', 'id713', 'id175', 'id2004', 'id3855', 'id390', 'id3106', 'id505', 'id3800', 'id4632', 'id256', 'id1577', 'id3110', 'id136', 'id2764', 'id1370', 'id2606', 'id4491', 'id3798', 'id2058', 'id3680', 'id2397', 'id5018', 'id547', 'id1581', 'id2176', 'id2192', 'id1916', 'id3103', 'id3795', 'id5597', 'id3797', 'id1970', 'id4758', 'id5129', 'id618', 'id294', 'id4276', 'id2195', 'id913', 'id5411', 'id583', 'id1090', 'id1388', 'id2571', 'id247', 'id60', 'id5051', 'id1840', 'id4098', 'id1726', 'id1651', 'id5656', 'id5637', 'id4625', 'id5598', 'id293', 'id4934', 'id830', 'id4926', 'id4850', 'id2194', 'id4819', 'id4858', 'id548', 'id1797', 'id686', 'id2495', 'id1499', 'id486', 'id1368', 'id368', 'id587', 'id1609', 'id3803', 'id5532', 'id985', 'id393', 'id958', 'id3107', 'id4835', 'id2563', 'id4387', 'id1230', 'id2617', 'id5491', 'id1338', 'id2730', 'id5529', 'id5638', 'id5242', 'id2007', 'id5204', 'id2179', 'id715', 'id105', 'id914', 'id178', 'id1794', 'id5436', 'id5627', 'id439', 'id4484', 'id586', 'id1617', 'id959', 'id194', 'id2494', 'id3678', 'id2187', 'id893', 'id2761', 'id242', 'id173', 'id2402', 'id4861', 'id4271', 'id190', 'id4832', 'id189', 'id453', 'id3220', 'id3849', 'id584', 'id1648', 'id5492', 'id2651', 'id5705', 'id4981', 'id5563', 'id2405', 'id1695', 'id5324', 'id2180', 'id4064', 'id5564', 'id484', 'id2569', 'id5316', 'id2178', 'id4154', 'id4778', 'id2614', 'id4631', 'id1415', 'id5655', 'id3907', 'id890', 'id3221', 'id4134', 'id4862', 'id1936', 'id4912', 'id413', 'id620', 'id4915', 'id957', 'id255', 'id4384', 'id1288', 'id1544', 'id4278', 'id320', 'id3854', 'id211', 'id5408', 'id1398', 'id5021', 'id241', 'id2724', 'id4913', 'id2565', 'id137', 'id4066', 'id853', 'id5281', 'id177', 'id4390', 'id2407', 'id5569', 'id1340', 'id5639', 'goodbye', 'id1618', 'id2616', 'id5050', 'id3417', 'id1294', 'id4980', 'id4993', 'id100', 'id370', 'id5278', 'id4904', 'id4821', 'id2644', 'id142', 'id2406', 'id145', 'id894', 'id2654', 'id5133', 'id1838', 'id5530', 'id4002', 'id916', 'id4839', 'id5413', 'id4158', 'id1342', 'id5449', 'id149', 'id5314', 'id5435', 'id2199', 'id2490', 'id1087', 'id4274', 'id1918', 'id99', 'id2308', 'id4878', 'id411', 'id3799', 'id4157', 'id1831', 'id1013', 'id1929', 'id5565', 'id1508', 'id4099', 'id3108', 'id58', 'id192', 'id1934', 'id1289', 'id895', 'id5059', 'id319', 'id2008', 'id4458', 'id4496', 'id4628', 'id1968', 'id5640', 'id2197', 'id2729', 'id4910', 'id315', 'id984', 'id4156', 'id144', 'id5450', 'id2645', 'id552', 'id5525', 'id5125', 'id5526', 'id1015', 'id1178', 'id246', 'id2573', 'id4490', 'id1699', 'id4385', 'id4063', 'id1842', 'id4779', 'id389', 'id3415', 'id4004', 'id260', 'id516', 'id2647', 'id4498', 'id2409', 'id243', 'id1836', 'id1339', 'id180', 'id655', 'id1510', 'id143', 'id2191', 'id917', 'id4776', 'id2735', 'id5544', 'id1115', 'id789', 'id829', 'id2760', 'id5229', 'id3219', 'id5240', 'id4759', 'id4936', 'id5022', 'id2398', 'id5126', 'id2653', 'id3682', 'id1612', 'id5131', 'id3113', 'id2487', 'id1971', 'id244', 'id5157', 'id182', 'id1393', 'id3114', 'id711', 'id2307', 'id1545', 'id4070', 'id1231', 'id4990', 'id2618', 'id1969', 'id5399', 'id683', 'id3104', 'id5407', 'id1549', 'id1839', 'id4994', 'id1372', 'id1497', 'id4800', 'id515', 'id2400', 'id5528', 'id1047', 'id140', 'id1389', 'id193', 'id4456', 'id4281', 'id4859', 'id4979', 'id4067', 'id793', 'id4279', 'id1919', 'id4132', 'id4806', 'id653', 'id5546', 'id1610', 'id181', 'id1172', 'id2403', 'id2486', 'id2650', 'id3848', 'id4888', 'id4130', 'id1391', 'id3681', 'id854', 'id4995', 'id5241', 'id372', 'id1119', 'id2733', 'id682', 'id3905', 'id1925', 'id3115', 'id1833', 'id4462', 'id1290', 'id506', 'id2763', 'id148', 'id4386', 'id2303', 'id290', 'id1206', 'id1504', 'id1725', 'id2184', 'id63', 'id2313', 'id3215', 'id3906', 'id4133', 'id1089', 'id4905', 'id2174', 'id2488', 'id915', 'id1232', 'id4633', 'id4774', 'id412', 'id1292', 'id104', 'id2401', 'id4863', 'id4991', 'id5613', 'id317', 'id4976', 'id5038', 'id5158', 'id4282', 'id4153', 'id1798', 'id5279', 'id4823', 'id1930', 'id62', 'id726', 'id2621', 'id685', 'id134', 'id1345', 'id1171', 'id4275', 'id1417', 'id1173', 'id4757', 'id1698', 'id1552', 'id1622', 'id1175', 'id4003', 'id5657', 'id2567', 'id1580', 'id1014', 'id106', 'id2311', 'id4833', 'id3112', 'id3851', 'id2306', 'id892', 'id101', 'id254', 'id1926', 'id1337', 'id5020', 'id5201', 'id2646', 'id827', 'id2183', 'id1207', 'id2491', 'id3850', 'id2315', 'id2655', 'id191', 'id1291', 'id2190', 'id616', 'id5493', 'id410', 'id5614', 'id259', 'id2731', 'id253', 'id5134', 'id4272', 'id3853', 'id1935', 'id150', 'id4996', 'id5547', 'id5410', 'id1343', 'id5405', 'id1834', 'id1170', 'id1088', 'id2605', 'id1696', 'id3909', 'id551', 'id4383', 'id1547', 'id1553', 'id1390', 'id1917', 'id1697', 'id4069', 'id1837', 'id4820', 'id1579', 'id2186', 'id1694', 'id2619', 'id2196', 'id717', 'id5226', 'id5406', 'id2185', 'id1966', 'id4010', 'id1578', 'id3805', 'id4269', 'id5102', 'id5280', 'id2762', 'id1117', 'id5058', 'id5203', 'id5615', 'id3413', 'id141', 'id4784', 'id2059', 'id1649', 'id4455', 'id1796', 'id4959', 'id3685', 'id4013', 'id4822', 'id5128', 'id2570', 'id1546', 'id4131', 'id1620', 'id983', 'id1169', 'id1046', 'id4104', 'id2652', 'id5132', 'id712', 'id1176', 'id2566', 'id5154', 'id4005', 'id292', 'id3856', 'id3796', 'id179', 'id64', 'id1921', 'id4781', 'id4803', 'id5136', 'id4494', 'id4941', 'id1924', 'id4873', 'id956', 'id2734', 'id4012', 'id2314', 'id3414', 'id2725', 'id2316', 'id1646', 'id183', 'id1608', 'id2613', 'id5040', 'id5039', 'id1799', 'id4065', 'id1650', 'id2310', 'id2492', 'id2188', 'id4836', 'id5130', 'id4100', 'id2057', 'id5451', 'id2198', 'id139', 'id1045', 'id1932', 'id245', 'id1511', 'id1923', 'id4773', 'id1295', 'id2399', 'id4911', 'id2648', 'id5135', 'id4283', 'id1841', 'id409', 'id3116', 'id4978', 'id1209', 'id1554', 'id107', 'id4389', 'id4273', 'id4007', 'id4101', 'id5545', 'id2189', 'id5404', 'id4493', 'id4772', 'id3214', 'id1371', 'id5313', 'id3802', 'id1418', 'id3217', 'id1067', 'id617', 'id4277', 'id1293', 'id4280', 'id4834', 'id456', 'id982', 'id258', 'id147', 'id4847', 'id2408', 'id2404', 'id5437', 'id4849', 'id3908', 'id5409', 'id5276', 'id1208', 'id454', 'id3804', 'id5561', 'id4933', 'id392', 'id1503', 'id195', 'id4775', 'id257', 'id2493', 'id5243', 'id1922', 'id2727', 'id1920', 'id504', 'id2489', 'id3904', 'id4903', 'id4940', 'id3419', 'id1550', 'id2604', 'id65', 'id4880', 'id102', 'id4391', 'id2225', 'id4129', 'id5052', 'id4879', 'id452', 'id1652', 'id1793', 'id5570', 'id2005', 'id1933', 'id5127', 'id2177', 'id1068', 'id4627', 'id1728', 'id291', 'id5202', 'id4001', 'id981', 'id3910', 'id1548', 'id4457', 'id5205', 'id5490', 'id289', 'id1700', 'id656', 'id4459', 'id3111', 'id1501', 'id2620', 'id1017', 'id1341', 'id2305', 'id4925', 'id3418', 'id2304', 'id5527', 'id4975', 'id391', 'id135', 'id5159', 'id4388', 'id1832', 'id4874', 'id5228', 'id4805', 'id4801', 'id1727', 'id3683', 'id3684', 'id4626', 'id2312', 'id4783', 'id4871', 'id2564', 'greet', 'id1795', 'id318', 'id1419', 'id1724', 'id1228', 'id4155', 'id1065', 'id5531', 'id103', 'id2622', 'id146', 'id1703', 'id1701', 'id4860', 'id5019', 'id1507', 'id414', 'id1346', 'id5412', 'id4495', 'id4927', 'id2181', 'id4935', 'id5227', 'id657', 'id4838', 'id1044', 'id2607', 'id4807', 'id2572', 'id316', 'id4152', 'id1296', 'id3852', 'id1611', 'id2182', 'id1421', 'id2728', 'id1505', 'id2175', 'id1116', 'id2562', 'id4887', 'id3679', 'id4497', 'id2732', 'id4848', 'id1042', 'id3857', 'id3109', 'id4008', 'id4851', 'id4872', 'id4804', 'id4914', 'id1835', 'id2615', 'id1369', 'id59', 'id4270', 'id5599', 'id5094', 'id1967', 'id4011', 'id4982', 'id1647', 'id4068', 'id1344', 'id261', 'id2006'
2022-02-04 01:25:54 INFO rasa.shared.nlu.training_data.training_data - Number of response examples: 0 (0 distinct responses)
2022-02-04 01:25:54 INFO rasa.shared.nlu.training_data.training_data - Number of entity examples: 0 (0 distinct entities)
2022-02-04 01:25:56 INFO rasa.nlu.model - Starting to train component HFTransformersNLP
/usr/local/lib/python3.7/dist-packages/rasa/nlu/utils/hugging_face/hf_transformers.py:444: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
return np.array(nonpadded_sequence_embeddings)
2022-02-04 01:27:23 INFO rasa.nlu.model - Finished training component.
2022-02-04 01:27:23 INFO rasa.nlu.model - Starting to train component JiebaTokenizer
Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 0.868 seconds.
Prefix dict has been built successfully.
2022-02-04 01:27:31 INFO rasa.nlu.model - Finished training component.
2022-02-04 01:27:31 INFO rasa.nlu.model - Starting to train component LanguageModelFeaturizer
2022-02-04 01:27:31 INFO rasa.nlu.model - Finished training component.
2022-02-04 01:27:31 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer
2022-02-04 01:27:33 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 5762 vocabulary items were created for text attribute.
2022-02-04 01:27:52 INFO rasa.nlu.model - Finished training component.
2022-02-04 01:27:52 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer
2022-02-04 01:27:55 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 28390 vocabulary items were created for text attribute.
2022-02-04 01:28:15 INFO rasa.nlu.model - Finished training component.
2022-02-04 01:28:15 INFO rasa.nlu.model - Starting to train component DIETClassifier
/usr/local/lib/python3.7/dist-packages/rasa/utils/tensorflow/model_data_utils.py:395: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
np.array([v[0] for v in values]), number_of_dimensions=3
Epochs: 0% 0/300 [00:00<?, ?it/s]Traceback (most recent call last):
File "/usr/local/bin/rasa", line 8, in <module>
sys.exit(main())
File "/usr/local/lib/python3.7/dist-packages/rasa/__main__.py", line 118, in main
cmdline_arguments.func(cmdline_arguments)
File "/usr/local/lib/python3.7/dist-packages/rasa/cli/train.py", line 59, in <lambda>
train_parser.set_defaults(func=lambda args: run_training(args, can_exit=True))
File "/usr/local/lib/python3.7/dist-packages/rasa/cli/train.py", line 103, in run_training
finetuning_epoch_fraction=args.epoch_fraction,
File "/usr/local/lib/python3.7/dist-packages/rasa/api.py", line 124, in train
loop,
File "/usr/local/lib/python3.7/dist-packages/rasa/utils/common.py", line 296, in run_in_loop
result = loop.run_until_complete(f)
File "uvloop/loop.pyx", line 1456, in uvloop.loop.Loop.run_until_complete
File "/usr/local/lib/python3.7/dist-packages/rasa/model_training.py", line 119, in train_async
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "/usr/local/lib/python3.7/dist-packages/rasa/model_training.py", line 251, in _train_async_internal
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "/usr/local/lib/python3.7/dist-packages/rasa/model_training.py", line 765, in _train_nlu_with_validated_data
**additional_arguments,
File "/usr/local/lib/python3.7/dist-packages/rasa/nlu/train.py", line 111, in train
interpreter = trainer.train(training_data, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/rasa/nlu/model.py", line 221, in train
component.train(working_data, self.config, **context)
File "/usr/local/lib/python3.7/dist-packages/rasa/nlu/classifiers/diet_classifier.py", line 887, in train
shuffle=False, # we use custom shuffle inside data generator
File "/usr/local/lib/python3.7/dist-packages/rasa/utils/tensorflow/temp_keras_modules.py", line 190, in fit
tmp_logs = train_function(iterator)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py", line 885, in __call__
result = self._call(*args, **kwds)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py", line 950, in _call
return self._stateless_fn(*args, **kwds)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py", line 3040, in __call__
filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py", line 1964, in _call_flat
ctx, args, cancellation_manager=cancellation_manager))
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py", line 596, in call
ctx=ctx)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py", line 60, in quick_execute
inputs, attrs, num_outputs)
tensorflow.python.framework.errors_impl.InvalidArgumentError: ConcatOp : Dimensions of inputs should match: shape[0] = [64,30,128] vs. shape[1] = [64,3,768]
[[node rasa_sequence_layer_text/rasa_feature_combining_layer_text/concatenate_sparse_dense_features_text_sequence/concat (defined at /lib/python3.7/dist-packages/rasa/utils/tensorflow/rasa_layers.py:338) ]] [Op:__inference_train_function_719741]
Errors may have originated from an input operation.
Input Source operations connected to node rasa_sequence_layer_text/rasa_feature_combining_layer_text/concatenate_sparse_dense_features_text_sequence/concat:
rasa_sequence_layer_text/rasa_feature_combining_layer_text/concatenate_sparse_dense_features_text_sequence/dropout/dropout/Mul_1 (defined at /lib/python3.7/dist-packages/rasa/utils/tensorflow/rasa_layers.py:308)
IteratorGetNext (defined at /lib/python3.7/dist-packages/rasa/utils/tensorflow/temp_keras_modules.py:190)
Function call stack:
train_function