Here is my config:
language: en
pipeline:
- name: "SpacyNLP"
case_sensitive: false
- name: "SpacyTokenizer"
- name: "CountVectorsFeaturizer"
analyzer: 'word'
min_ngram: 1
max_ngram: 3
lowercase: true
OOV_token: 'oov'
- name: "SpacyFeaturizer"
return_sequence: true
- name: "RegexFeaturizer"
- name: "CRFEntityExtractor"
- name: "EntitySynonymMapper"
- name: "EmbeddingIntentClassifier"
loss_type: "margin"
- name: "ResponseSelector"
I upgraded to rasa 1.6.0
and wanted to see how custom features will affect the CRFEntityExtractor
. I don’t understand why this error is coming. Please help.
Here is the complete traceback:
Traceback (most recent call last):
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\saurabhd\AppData\Local\Programs\Python\Python36\Scripts\rasa.exe\__main__.py", line 7, in <module>
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\__main__.py", line 76, in main
cmdline_arguments.func(cmdline_arguments)
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\cli\train.py", line 76, in train
kwargs=extract_additional_arguments(args),
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\train.py", line 46, in train
kwargs=kwargs,
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\asyncio\base_events.py", line 484, in run_until_complete
return future.result()
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\train.py", line 97, in train_async
kwargs,
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\train.py", line 184, in _train_async_internal
kwargs=kwargs,
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\train.py", line 241, in _do_training
persist_nlu_training_data=persist_nlu_training_data,
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\train.py", line 470, in _train_nlu_with_validated_data
persist_nlu_training_data=persist_nlu_training_data,
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\nlu\train.py", line 86, in train
interpreter = trainer.train(training_data, **kwargs)
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\nlu\model.py", line 191, in train
updates = component.train(working_data, self.config, **context)
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\nlu\classifiers\embedding_intent_classifier.py", line 708, in train
session_data = self.preprocess_train_data(training_data)
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\nlu\classifiers\embedding_intent_classifier.py", line 684, in preprocess_train_data
label_attribute=INTENT_ATTRIBUTE,
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\nlu\classifiers\embedding_intent_classifier.py", line 411, in _create_session_data
_sparse, _dense = self._extract_and_add_features(e, TEXT_ATTRIBUTE)
File "c:\users\saurabhd\appdata\local\programs\python\python36\lib\site-packages\rasa\nlu\classifiers\embedding_intent_classifier.py", line 303, in _extract_and_add_features
f"Sequence dimensions for sparse and dense features "
ValueError: Sequence dimensions for sparse and dense features don't coincide in 'fabric in house' for attribute 'text'.