Hi @nik202 I hope I not disturbing you
this is my sentiment.py where i put print (sentiment), print (confidence). I added the sentiment component in the registry.py
from rasa.nlu.components import Component
from rasa.nlu import utils
from rasa.nlu.model import Metadata
import nltk
from nltk.classify import NaiveBayesClassifier
import os
import typing
from typing import Any, Optional, Text, Dict
SENTIMENT_MODEL_FILE_NAME = "sentiment_classifier.pkl"
class SentimentAnalyzer(Component):
"""A custom sentiment analysis component"""
name = "sentiment"
provides = ["entities"]
requires = ["tokens"]
defaults = {}
language_list = ["en"]
print('initialised the class')
def __init__(self, component_config=None):
super(SentimentAnalyzer, self).__init__(component_config)
def train(self, training_data, cfg, **kwargs):
"""Load the sentiment polarity labels from the text
file, retrieve training tokens and after formatting
data train the classifier."""
with open('labels.txt','r') as f:
labels = f.read().splitlines()
training_data = training_data.training_examples #list of Message objects
tokens = [list(map(lambda x: x.text, t.get('tokens'))) for t in training_data]
processed_tokens = [self.preprocessing(t) for t in tokens]
labeled_data = [(t, x) for t,x in zip(processed_tokens, labels)]
self.clf = NaiveBayesClassifier.train(labeled_data)
def convert_to_rasa(self, value, confidence):
"""Convert model output into the Rasa NLU compatible output format."""
entity = {"value": value,
"confidence": confidence,
"entity": "sentiment",
"extractor": "sentiment_extractor"}
print(entity)
return entity
def preprocessing(self, tokens):
"""Create bag-of-words representation of the training examples."""
print(tokens)
return ({word: True for word in tokens})
def process(self, message, **kwargs):
"""Retrieve the tokens of the new message, pass it to the classifier
and append prediction results to the message class."""
if not self.clf:
# component is either not trained or didn't
# receive enough training data
entity = None
else:
tokens = [t.text for t in message.get("tokens")]
tb = self.preprocessing(tokens)
pred = self.clf.prob_classify(tb)
sentiment = pred.max()
confidence = pred.prob(sentiment)
entity = self.convert_to_rasa(sentiment, confidence)
print(entity)
print(sentiment)
print(confidence)
message.set("entities", [entity], add_to_output=True)
def persist(self, file_name, model_dir):
"""Persist this model into the passed directory."""
classifier_file = os.path.join(model_dir, SENTIMENT_MODEL_FILE_NAME)
utils.json_pickle(classifier_file, self)
return {"classifier_file": SENTIMENT_MODEL_FILE_NAME}
@classmethod
def load(cls,
meta: Dict[Text, Any],
model_dir=None,
model_metadata=None,
cached_component=None,
**kwargs):
file_name = meta.get("classifier_file")
classifier_file = os.path.join(model_dir, file_name)
return utils.json_unpickle(classifier_file)
after that i trained the model then run it with shell --debug and like you see nothing about sentiment entity?