Installation failure, Rasa 2.40 ON WINDOWS 10

I’m following all steps on windows 10 to install rasa, as described in the docs

I end up a bit frustrated with this error log

c:\Projects\rasa
(v00) λ rasa init
2021-03-19 16:25:15.647977: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudart64_101.dll
2021-03-19 16:25:23.376028: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library nvcuda.dll
2021-03-19 16:25:23.887628: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 960M computeCapability: 5.0
coreClock: 1.176GHz coreCount: 5 deviceMemorySize: 4.00GiB deviceMemoryBandwidth: 74.65GiB/s
2021-03-19 16:25:23.887938: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudart64_101.dll
2021-03-19 16:25:23.938980: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll
2021-03-19 16:25:23.983473: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cufft64_10.dll
2021-03-19 16:25:23.993417: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library curand64_10.dll
2021-03-19 16:25:24.051077: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cusolver64_10.dll
2021-03-19 16:25:24.077288: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cusparse64_10.dll
2021-03-19 16:25:24.188541: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll
2021-03-19 16:25:24.508893: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0
Welcome to Rasa! 🤖

To get started quickly, an initial project will be created.
If you need some help, check out the documentation at https://rasa.com/docs/rasa.
Now let's start! 👇🏽

? Please enter a path where the project will be created [default: current directory] 00
? Path '00' does not exist 🧐. Create path?  Yes
Created project directory at 'c:\Projects\rasa\00'.
Finished creating project structure.
? Do you want to train an initial model? 💪🏽  Yes
Training an initial model...
The configuration for pipeline and policies was chosen automatically. It was written into the config file at '00\config.yml'.
Training NLU model...
c:\projects\rasa\v00\lib\site-packages\rasa\utils\train_utils.py:531: UserWarning: model_confidence is set to `softmax`. It is recommended to try using `model_confidence=linear_norm` to make it easier to tune fallback thresholds.
  rasa.shared.utils.io.raise_warning(
2021-03-19 16:25:52 INFO     rasa.shared.nlu.training_data.training_data  - Training data stats:
2021-03-19 16:25:52 INFO     rasa.shared.nlu.training_data.training_data  - Number of intent examples: 69 (7 distinct intents)

2021-03-19 16:25:52 INFO     rasa.shared.nlu.training_data.training_data  -   Found intents: 'greet', 'bot_challenge', 'goodbye', 'affirm', 'mood_great', 'mood_unhappy', 'deny'
2021-03-19 16:25:52 INFO     rasa.shared.nlu.training_data.training_data  - Number of response examples: 0 (0 distinct responses)
2021-03-19 16:25:52 INFO     rasa.shared.nlu.training_data.training_data  - Number of entity examples: 0 (0 distinct entities)
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Starting to train component WhitespaceTokenizer
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Finished training component.
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Starting to train component RegexFeaturizer
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Finished training component.
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Starting to train component LexicalSyntacticFeaturizer
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Finished training component.
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Starting to train component CountVectorsFeaturizer
2021-03-19 16:25:52 INFO     rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer  - 80 vocabulary slots consumed out of 1080 slots configured for text attribute.
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Finished training component.
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Starting to train component CountVectorsFeaturizer
2021-03-19 16:25:52 INFO     rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer  - 697 vocabulary slots consumed out of 1697 slots configured for text attribute.
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Finished training component.
2021-03-19 16:25:52 INFO     rasa.nlu.model  - Starting to train component DIETClassifier
2021-03-19 16:25:52.329695: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations:  AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-03-19 16:25:52.345030: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x25190fd2e30 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2021-03-19 16:25:52.345314: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
2021-03-19 16:25:52.751585: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 960M computeCapability: 5.0
coreClock: 1.176GHz coreCount: 5 deviceMemorySize: 4.00GiB deviceMemoryBandwidth: 74.65GiB/s
2021-03-19 16:25:52.752158: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudart64_101.dll
2021-03-19 16:25:52.752365: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll
2021-03-19 16:25:52.752580: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cufft64_10.dll
2021-03-19 16:25:52.752919: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library curand64_10.dll
2021-03-19 16:25:52.753116: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cusolver64_10.dll
2021-03-19 16:25:52.753301: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cusparse64_10.dll
2021-03-19 16:25:52.753512: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll
2021-03-19 16:25:52.753857: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0
2021-03-19 16:25:52.921776: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-03-19 16:25:52.922077: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263]      0
2021-03-19 16:25:52.922412: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0:   N
2021-03-19 16:25:52.922984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3122 MB memory) -> physical GPU (device: 0, name: GeForce GTX 960M, pci bus id: 0000:01:00.0, compute capability: 5.0)
2021-03-19 16:25:52.930999: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x25190fd2fb0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2021-03-19 16:25:52.931313: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): GeForce GTX 960M, Compute Capability 5.0
Traceback (most recent call last):
  File "C:\Python38\lib\runpy.py", line 194, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "C:\Python38\lib\runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "c:\Projects\rasa\v00\Scripts\rasa.exe\__main__.py", line 7, in <module>
  File "c:\projects\rasa\v00\lib\site-packages\rasa\__main__.py", line 116, in main
    cmdline_arguments.func(cmdline_arguments)
  File "c:\projects\rasa\v00\lib\site-packages\rasa\cli\scaffold.py", line 234, in run
    init_project(args, path)
  File "c:\projects\rasa\v00\lib\site-packages\rasa\cli\scaffold.py", line 129, in init_project
    print_train_or_instructions(args, path)
  File "c:\projects\rasa\v00\lib\site-packages\rasa\cli\scaffold.py", line 68, in print_train_or_instructions
    training_result = rasa.train(domain, config, training_files, output)
  File "c:\projects\rasa\v00\lib\site-packages\rasa\train.py", line 94, in train
    return rasa.utils.common.run_in_loop(
  File "c:\projects\rasa\v00\lib\site-packages\rasa\utils\common.py", line 307, in run_in_loop
    result = loop.run_until_complete(f)
  File "C:\Python38\lib\asyncio\base_events.py", line 616, in run_until_complete
    return future.result()
  File "c:\projects\rasa\v00\lib\site-packages\rasa\train.py", line 163, in train_async
    return await _train_async_internal(
  File "c:\projects\rasa\v00\lib\site-packages\rasa\train.py", line 342, in _train_async_internal
    await _do_training(
  File "c:\projects\rasa\v00\lib\site-packages\rasa\train.py", line 388, in _do_training
    model_path = await _train_nlu_with_validated_data(
  File "c:\projects\rasa\v00\lib\site-packages\rasa\train.py", line 812, in _train_nlu_with_validated_data
    await rasa.nlu.train(
  File "c:\projects\rasa\v00\lib\site-packages\rasa\nlu\train.py", line 115, in train
    interpreter = trainer.train(training_data, **kwargs)
  File "c:\projects\rasa\v00\lib\site-packages\rasa\nlu\model.py", line 209, in train
    updates = component.train(working_data, self.config, **context)
  File "c:\projects\rasa\v00\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py", line 834, in train
    self.model = self._instantiate_model_class(model_data)
  File "c:\projects\rasa\v00\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py", line 1174, in _instantiate_model_class
    return self.model_class()(
  File "c:\projects\rasa\v00\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py", line 1192, in __init__
    super().__init__("DIET", config, data_signature, label_data)
  File "c:\projects\rasa\v00\lib\site-packages\rasa\utils\tensorflow\models.py", line 447, in __init__
    super().__init__(
  File "c:\projects\rasa\v00\lib\site-packages\rasa\utils\tensorflow\models.py", line 82, in __init__
    super().__init__(**kwargs)
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\training\tracking\base.py", line 457, in _method_wrapper
    result = method(self, *args, **kwargs)
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\keras\engine\training.py", line 308, in __init__
    self._init_batch_counters()
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\training\tracking\base.py", line 457, in _method_wrapper
    result = method(self, *args, **kwargs)
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\keras\engine\training.py", line 317, in _init_batch_counters
    self._train_counter = variables.Variable(0, dtype='int64', aggregation=agg)
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\variables.py", line 262, in __call__
    return cls._variable_v2_call(*args, **kwargs)
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\variables.py", line 244, in _variable_v2_call
    return previous_getter(
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\variables.py", line 237, in <lambda>
    previous_getter = lambda **kws: default_variable_creator_v2(None, **kws)
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 2633, in default_variable_creator_v2
    return resource_variable_ops.ResourceVariable(
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\variables.py", line 264, in __call__
    return super(VariableMetaclass, cls).__call__(*args, **kwargs)
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 1507, in __init__
    self._init_from_args(
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 1661, in _init_from_args
    handle = eager_safe_variable_handle(
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 242, in eager_safe_variable_handle
    return _variable_handle_from_shape_and_dtype(
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 174, in _variable_handle_from_shape_and_dtype
    gen_logging_ops._assert(  # pylint: disable=protected-access
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\ops\gen_logging_ops.py", line 49, in _assert
    _ops.raise_from_not_ok_status(e, name)
  File "c:\projects\rasa\v00\lib\site-packages\tensorflow\python\framework\ops.py", line 6843, in raise_from_not_ok_status
    six.raise_from(core._status_to_exception(e.code, message), None)
  File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: assertion failed: [0] [Op:Assert] name: EagerVariableNameReuse

c:\Projects\rasa
(v00) λ

Not sure how to go from here

Hi @CharlesOkwuagwu. Just to verify, you have tried installing as described in this video?