sure here it is,
I did everything again from scratch:
(v) [galym@mx]$
(v) [galym@mx]$
(v) [galym@mx]$ rasa train
2021-02-26 21:49:59.295813: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
2021-02-26 21:49:59.295852: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2021-02-26 21:50:00.606995: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2021-02-26 21:50:00.607025: W tensorflow/stream_executor/cuda/cuda_driver.cc:312] failed call to cuInit: UNKNOWN ERROR (303)
2021-02-26 21:50:00.607042: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (mx): /proc/driver/nvidia/version does not exist
2021-02-26 21:50:01 INFO rasa.model - Data (core-config) for Core model section changed.
2021-02-26 21:50:01 INFO rasa.model - Data (nlu-config) for NLU model section changed.
2021-02-26 21:50:01 INFO rasa.model - Data (core-config) for Core model section changed.
2021-02-26 21:50:01 INFO rasa.model - Data (nlu-config) for NLU model section changed.
Training NLU model...
/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/utils/train_utils.py:437: UserWarning: constrain_similarities is set to `False`. It is recommended to set it to `True` when using cross-entropy loss. It will be set to `True` by default, Rasa Open Source 3.0.0 onwards.
category=UserWarning,
/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/utils/train_utils.py:410: UserWarning: model_confidence is set to `softmax`. It is recommended to set it to `cosine`. It will be set to `cosine` by default, Rasa Open Source 3.0.0 onwards.
category=UserWarning,
2021-02-26 21:50:01 INFO rasa.shared.nlu.training_data.training_data - Training data stats:
2021-02-26 21:50:01 INFO rasa.shared.nlu.training_data.training_data - Number of intent examples: 69 (7 distinct intents)
2021-02-26 21:50:01 INFO rasa.shared.nlu.training_data.training_data - Found intents: 'affirm', 'greet', 'deny', 'goodbye', 'mood_great', 'mood_unhappy', 'bot_challenge'
2021-02-26 21:50:01 INFO rasa.shared.nlu.training_data.training_data - Number of response examples: 0 (0 distinct responses)
2021-02-26 21:50:01 INFO rasa.shared.nlu.training_data.training_data - Number of entity examples: 0 (0 distinct entities)
2021-02-26 21:50:01 INFO rasa.nlu.model - Starting to train component WhitespaceTokenizer
2021-02-26 21:50:01 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:01 INFO rasa.nlu.model - Starting to train component Printer
2021-02-26 21:50:01 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:01 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer
2021-02-26 21:50:01 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 80 vocabulary slots consumed out of 1080 slots configured for text attribute.
2021-02-26 21:50:01 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:01 INFO rasa.nlu.model - Starting to train component Printer
2021-02-26 21:50:01 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:01 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer
2021-02-26 21:50:01 INFO rasa.nlu.featurizers.sparse_featurizer.count_vectors_featurizer - 697 vocabulary slots consumed out of 1697 slots configured for text attribute.
2021-02-26 21:50:01 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:01 INFO rasa.nlu.model - Starting to train component Printer
2021-02-26 21:50:01 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:01 INFO rasa.nlu.model - Starting to train component LexicalSyntacticFeaturizer
2021-02-26 21:50:01 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:01 INFO rasa.nlu.model - Starting to train component Printer
2021-02-26 21:50:01 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:01 INFO rasa.nlu.model - Starting to train component DIETClassifier
2021-02-26 21:50:01.788201: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2691275000 Hz
2021-02-26 21:50:01.788915: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x61b31a0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2021-02-26 21:50:01.788932: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
Epochs: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:03<00:00, 6.16it/s, t_loss=4.652, i_acc=0.739]
2021-02-26 21:50:12 INFO rasa.utils.tensorflow.models - Finished training.
2021-02-26 21:50:12 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:12 INFO rasa.nlu.model - Starting to train component Printer
2021-02-26 21:50:12 INFO rasa.nlu.model - Finished training component.
2021-02-26 21:50:13 INFO rasa.nlu.model - Successfully saved model into '/tmp/tmp1qver3m5/nlu'
NLU model training completed.
Training Core model...
/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/policies/mapping_policy.py:52: FutureWarning: 'MappingPolicy' is deprecated and will be removed in the future. It is recommended to use the 'RulePolicy' instead. (will be removed in 3.0.0)
docs=DOCS_URL_MIGRATION_GUIDE,
Processed story blocks: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 2034.10it/s, # trackers=1]
Processed story blocks: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1036.06it/s, # trackers=3]
Processed story blocks: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 265.17it/s, # trackers=12]
Processed story blocks: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 65.56it/s, # trackers=39]
Processed rules: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2854.24it/s, # trackers=1]
/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/shared/utils/io.py:93: UserWarning: Found rule-based training data but no policy supporting rule-based data. Please add `RulePolicy` or another rule-supporting policy to the `policies` section in `config.yml`.
More info at https://rasa.com/docs/rasa/rules
Processed trackers: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 912.93it/s, # actions=12]
Processed actions: 12it [00:00, 10303.31it/s, # examples=12]
Processed trackers: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 120/120 [00:00<00:00, 234.65it/s, # actions=441]
╔═════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╗
║ after tokenizer ║
╚═════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╝
Traceback (most recent call last):
File "/home/galym/Nrasa/v/bin/rasa", line 8, in <module>
sys.exit(main())
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/__main__.py", line 116, in main
cmdline_arguments.func(cmdline_arguments)
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/cli/train.py", line 58, in <lambda>
train_parser.set_defaults(func=lambda args: train(args, can_exit=True))
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/cli/train.py", line 102, in train
finetuning_epoch_fraction=args.epoch_fraction,
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/train.py", line 109, in train
loop,
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/utils/common.py", line 308, in run_in_loop
result = loop.run_until_complete(f)
File "uvloop/loop.pyx", line 1456, in uvloop.loop.Loop.run_until_complete
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/train.py", line 174, in train_async
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/train.py", line 353, in _train_async_internal
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/train.py", line 415, in _do_training
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/train.py", line 610, in _train_core_with_validated_data
model_to_finetune=model_to_finetune,
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/train.py", line 70, in train
agent.train(training_data, **additional_arguments)
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/agent.py", line 726, in train
training_trackers, self.domain, interpreter=self.interpreter, **kwargs
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/policies/ensemble.py", line 201, in train
trackers_to_train, domain, interpreter=interpreter, **kwargs
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/policies/ted_policy.py", line 500, in train
**kwargs,
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/policies/policy.py", line 183, in featurize_for_training
training_trackers, domain, interpreter, bilou_tagging
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/featurizers/tracker_featurizers.py", line 209, in featurize_trackers
tracker_state_features = self._featurize_states(trackers_as_states, interpreter)
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/featurizers/tracker_featurizers.py", line 76, in _featurize_states
for tracker_states in trackers_as_states
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/featurizers/tracker_featurizers.py", line 76, in <listcomp>
for tracker_states in trackers_as_states
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/featurizers/tracker_featurizers.py", line 74, in <listcomp>
for state in tracker_states
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/featurizers/single_state_featurizer.py", line 284, in encode_state
self._extract_state_features(sub_state, interpreter, sparse=True)
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/featurizers/single_state_featurizer.py", line 246, in _extract_state_features
parsed_message = interpreter.featurize_message(message)
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/core/interpreter.py", line 158, in featurize_message
result = self.interpreter.featurize_message(message)
File "/home/galym/Nrasa/v/lib/python3.7/site-packages/rasa/nlu/model.py", line 470, in featurize_message
component.process(message, **self.context)
File "/home/galym/Nrasa/printer.py", line 88, in process
print_message(message)
File "/home/galym/Nrasa/printer.py", line 45, in print_message
features["intent"] = {k: v for k, v in features["intent"].items() if "id" != k}
AttributeError: 'str' object has no attribute 'items'
Should I change the pipeline sequence?