Hey everyone, working my way through the masterclass. Getting very stuck on this error when trying to train the NLU component.
(venv) MacBook-Pro-8:Rasa Freezersting$ rasa train nlu
Training NLU model...
/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/nlu/config.py:50: FutureWarning: You are using a pipeline template. All pipelines templates are deprecated and will be removed in version 2.0. Please add the components you want to use directly to your configuration file.
return RasaNLUModelConfig(config)
2020-06-24 13:37:09 INFO rasa.nlu.utils.spacy_utils - Trying to load spacy model with name 'en'
2020-06-24 13:37:10 INFO rasa.nlu.components - Added 'SpacyNLP' to component cache. Key 'SpacyNLP-en'.
2020-06-24 13:37:10 INFO rasa.nlu.training_data.training_data - Training data stats:
2020-06-24 13:37:10 INFO rasa.nlu.training_data.training_data - Number of intent examples: 37 (7 distinct intents)
2020-06-24 13:37:10 INFO rasa.nlu.training_data.training_data - Found intents: 'affirm', 'greet', 'deny', 'goodbye', 'inform', 'search_provider', 'bot_challenge'
2020-06-24 13:37:10 INFO rasa.nlu.training_data.training_data - Number of response examples: 0 (0 distinct responses)
2020-06-24 13:37:10 INFO rasa.nlu.training_data.training_data - Number of entity examples: 12 (3 distinct entities)
2020-06-24 13:37:10 INFO rasa.nlu.training_data.training_data - Found entity types: '(facility_type', 'facility_type', 'location'
/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/utils/common.py:363: UserWarning: Entity entity '(facility_type' has only 1 training examples! The minimum is 2, because of this the training may fail.
2020-06-24 13:37:10 INFO rasa.nlu.model - Starting to train component SpacyNLP
2020-06-24 13:37:10 INFO rasa.nlu.model - Finished training component.
2020-06-24 13:37:10 INFO rasa.nlu.model - Starting to train component SpacyTokenizer
2020-06-24 13:37:10 INFO rasa.nlu.model - Finished training component.
2020-06-24 13:37:10 INFO rasa.nlu.model - Starting to train component SpacyFeaturizer
2020-06-24 13:37:10 INFO rasa.nlu.model - Finished training component.
2020-06-24 13:37:10 INFO rasa.nlu.model - Starting to train component RegexFeaturizer
2020-06-24 13:37:10 INFO rasa.nlu.model - Finished training component.
2020-06-24 13:37:10 INFO rasa.nlu.model - Starting to train component CRFEntityExtractor
2020-06-24 13:37:10 INFO rasa.nlu.model - Finished training component.
2020-06-24 13:37:10 INFO rasa.nlu.model - Starting to train component EntitySynonymMapper
2020-06-24 13:37:10 INFO rasa.nlu.model - Finished training component.
2020-06-24 13:37:10 INFO rasa.nlu.model - Starting to train component SklearnIntentClassifier
Fitting 2 folds for each of 6 candidates, totalling 12 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 12 out of 12 | elapsed: 0.0s finished
Traceback (most recent call last):
File "/Users/Freezersting/Rasa/venv/bin/rasa", line 8, in <module>
sys.exit(main())
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/__main__.py", line 92, in main
cmdline_arguments.func(cmdline_arguments)
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/cli/train.py", line 140, in train_nlu
persist_nlu_training_data=args.persist_nlu_data,
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/train.py", line 414, in train_nlu
persist_nlu_training_data,
File "uvloop/loop.pyx", line 1456, in uvloop.loop.Loop.run_until_complete
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/train.py", line 453, in _train_nlu_async
persist_nlu_training_data=persist_nlu_training_data,
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/train.py", line 482, in _train_nlu_with_validated_data
persist_nlu_training_data=persist_nlu_training_data,
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/nlu/train.py", line 90, in train
interpreter = trainer.train(training_data, **kwargs)
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/nlu/model.py", line 191, in train
updates = component.train(working_data, self.config, **context)
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/rasa/nlu/classifiers/sklearn_intent_classifier.py", line 125, in train
self.clf.fit(X, y)
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/sklearn/model_selection/_search.py", line 739, in fit
self.best_estimator_.fit(X, y, **fit_params)
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/sklearn/svm/_base.py", line 148, in fit
accept_large_sparse=False)
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 755, in check_X_y
estimator=estimator)
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 578, in check_array
allow_nan=force_all_finite == 'allow-nan')
File "/Users/Freezersting/Rasa/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 60, in _assert_all_finite
msg_dtype if msg_dtype is not None else X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').