# Configuration for Rasa NLU.
# https://rasa.com/docs/rasa/nlu/components/
language: en
pipeline:
# # No configuration for the NLU pipeline was provided. The following default pipeline was used to train your model.
# # If you'd like to customize it, uncomment and adjust the pipeline.
# # See https://rasa.com/docs/rasa/tuning-your-model for more information.
- name: WhitespaceTokenizer
- name: RegexFeaturizer
- name: RegexEntityExtractor
- name: LexicalSyntacticFeaturizer
- name: CountVectorsFeaturizer
analyzer: char_wb
min_ngram: 1
max_ngram: 4
- name: DIETClassifier
epochs: 100
- name: EntitySynonymMapper
- name: ResponseSelector
epochs: 100
- name: FallbackClassifier
threshold: 0.3
ambiguity_threshold: 0.1
- name: "SpacyNLP"
# language model to load
model: "en_core_web_md"
# when retrieving word vectors, this will decide if the casing
# of the word is relevant. E.g. `hello` and `Hello` will
# retrieve the same vector, if set to `False`. For some
# applications and models it makes sense to differentiate
# between these two words, therefore setting this to `True`.
case_sensitive: False
- name: "SpacyEntityExtractor"
# dimensions to extract
dimensions: ["PERSON", "LOC"]
- name: "DucklingEntityExtractor"
url: "http://127.0.0.1
dimensions: ["time", "amount-of-money", "distance", "amount-of-money", "phone-number", "url", "credit-card-number", "email"]
locale: "en_GB"
timezone: "Europe/London"
timeout: 3