Which is the proper way of linking Rasa NLU for swedish language? First I downloaded spaCy Swedish language model, and I tried to link it by doing:
user:~$ pip3 install sv_model-0.0.0.tar.gz && python3 -m spacy link sv_model sv
Then I train and launch the Rasa nlu model:
python3 -m rasa_nlu.train -c config.yml --data data/corpus/ -o models --project current --verbose
and
python3 -m rasa_nlu.server --path ./models
However, when I do:
curl 'localhost:5000/parse?q=Jag%vill%flyga%från%Paris%till%London%imorgon&project=current
I dont get any duckling entity resolved. My config file looks like this:
language: 'sv'
pipeline:
- name: "nlp_spacy"
- name: "tokenizer_spacy"
- name: "intent_entity_featurizer_regex"
- name: "intent_featurizer_spacy"
- name: "ner_spacy"
- name: "ner_crf"
- name: "ner_synonyms"
- name: "intent_classifier_sklearn"
- name: "ner_duckling_http"
url: "http://0.0.0.0:8000"
locale: "en_UK"
dimensions: ["time", "number"]
timezone: "UK/London"
And duckling is running like this:
no port specified, defaulting to port 8000
Listening on http://0.0.0.0:8000
When I just curl to the duckling server, I actually have Swedish language support, for example:
$ curl -XPOST http://0.0.0.0:8000/parse --data 'locale=sv_SV&text=imorgon på åtta'
Then:
[{"body":"imorgon på åtta","start":0,"value":{"values":[{"value":"2018-10-19T08:00:00.000-07:00",
"grain":"hour",
"type":"value"}]
,"value":"2018-10-19T08:00:00.000-07:00",
"grain":"hour",
"type":"value"},
"end":15,
"dim":"time",
"latent":false}
Therefore, my question is how can I get duckling support for Swedish language? I think I am not connecting well the SpaCy model with duckling because everything works well if I try with a different language like English.