Hello,
I use Rasa v2.0.2
I have an error when i run rasa train nlu. Rasa can’t download huggingface model. I have this error : OSError: Can’t load tokenizer for ‘camembert-base’. If you were trying to load it from ‘Models - Hugging Face’, make sure you don’t have a local directory with thesame name. Otherwise, make sure ‘camembert-base’ is the correct path to a directory containing all relevant files for a BertTokenizer tokenizer. 2022-09-13 16:08:09 WARNING urllib3.connectionpool - Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by ‘ProxyError(‘Cannot connect to proxy.’, OSError(‘Tunnel connection failed: 407 Proxy Authentication Required’,))’: /api/2801673/store/
However, when I run the transformers command directly, I have no problem downloading the model.
from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained(“camembert-base”) Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28.0/28.0 [00:00<00:00, 26.4kB/s] Downloading: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 570/570 [00:00<00:00, 437kB/s] Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 226k/226k [00:00<00:00, 664kB/s] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 455k/455k [00:00<00:00, 1.09MB/s]
I have not found in the docs any specific proxy settings for Rasa. Has anyone experienced this problem?
my conf :
language: fr
pipeline:
- name: HFTransformersNLP
model_name: “bert”
model_weights: “camembert-base”
cache_dir: /xxx/yyyy/.cache # required with Botfront - name: LanguageModelTokenizer
- name: LanguageModelFeaturizer
- name: CountVectorsFeaturizer
- name: CountVectorsFeaturizer analyzer: char_wb min_ngram: 1 max_ngram: 4
- name: DIETClassifier