/opt/venv/lib/python3.10/site-packages/rasa/core/tracker_store.py:1047: MovedIn20Warning: Deprecated API features detected! These feature(s) are not compatible with SQLAlchemy 2.0. To prevent incompatible upgrades prior to updating applications, ensure requirements files are pinned to “sqlalchemy<2.0”. Set environment variable SQLALCHEMY_WARN_20=1 to show all deprecation warnings. Set environment variable SQLALCHEMY_SILENCE_UBER_WARNING=1 to silence this message. (Background on SQLAlchemy 2.0 at: Error Messages — SQLAlchemy 2.0 Documentation)
Base: DeclarativeMeta = declarative_base()
/opt/venv/lib/python3.10/site-packages/pkg_resources/init.py:121: DeprecationWarning: pkg_resources is deprecated as an API
warnings.warn(“pkg_resources is deprecated as an API”, DeprecationWarning)
/opt/venv/lib/python3.10/site-packages/pkg_resources/init.py:2870: DeprecationWarning: Deprecated call to pkg_resources.declare_namespace('google')
.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to pkg_resources.declare_namespace
. See Keywords - setuptools 68.1.0.post20230815 documentation
declare_namespace(pkg)
/opt/venv/lib/python3.10/site-packages/pkg_resources/init.py:2870: DeprecationWarning: Deprecated call to pkg_resources.declare_namespace('google.cloud')
.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to pkg_resources.declare_namespace
. See Keywords - setuptools 68.1.0.post20230815 documentation
declare_namespace(pkg)
/opt/venv/lib/python3.10/site-packages/pkg_resources/init.py:2870: DeprecationWarning: Deprecated call to pkg_resources.declare_namespace('google.logging')
.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to pkg_resources.declare_namespace
. See Keywords - setuptools 68.1.0.post20230815 documentation
declare_namespace(pkg)
/opt/venv/lib/python3.10/site-packages/pkg_resources/init.py:2870: DeprecationWarning: Deprecated call to pkg_resources.declare_namespace('mpl_toolkits')
.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to pkg_resources.declare_namespace
. See Keywords - setuptools 68.1.0.post20230815 documentation
declare_namespace(pkg)
/opt/venv/lib/python3.10/site-packages/pkg_resources/init.py:2870: DeprecationWarning: Deprecated call to pkg_resources.declare_namespace('ruamel')
.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to pkg_resources.declare_namespace
. See Keywords - setuptools 68.1.0.post20230815 documentation
declare_namespace(pkg)
/opt/venv/lib/python3.10/site-packages/pkg_resources/init.py:2870: DeprecationWarning: Deprecated call to pkg_resources.declare_namespace('ruamel.yaml')
.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to pkg_resources.declare_namespace
. See Keywords - setuptools 68.1.0.post20230815 documentation
declare_namespace(pkg)
┌────────────────────────────────────────────────────────────────────────────────┐
│ Rasa Open Source reports anonymous usage telemetry to help improve the product │
│ for all its users. │
│ │
│ If you’d like to opt-out, you can use rasa telemetry disable
. │
│ To learn more, check out https://rasa.com/docs/rasa/telemetry/telemetry. │
└────────────────────────────────────────────────────────────────────────────────┘
Traceback (most recent call last):
File “/opt/venv/bin/rasa”, line 8, in
sys.exit(main())
File “/opt/venv/lib/python3.10/site-packages/rasa/main.py”, line 126, in main
cmdline_arguments.func(cmdline_arguments)
File “/opt/venv/lib/python3.10/site-packages/rasa/cli/train.py”, line 62, in
train_parser.set_defaults(func=lambda args: run_training(args, can_exit=True))
File “/opt/venv/lib/python3.10/site-packages/rasa/cli/train.py”, line 94, in run_training
training_result = train_all(
File “/opt/venv/lib/python3.10/site-packages/rasa/api.py”, line 103, in train
from rasa.model_training import train
File “/opt/venv/lib/python3.10/site-packages/rasa/model_training.py”, line 7, in
import rasa.engine.validation
File “/opt/venv/lib/python3.10/site-packages/rasa/engine/validation.py”, line 20, in
from rasa.core.policies.policy import PolicyPrediction
File “/opt/venv/lib/python3.10/site-packages/rasa/core/policies/policy.py”, line 26, in
from rasa.core.featurizers.tracker_featurizers import TrackerFeaturizer
File “/opt/venv/lib/python3.10/site-packages/rasa/core/featurizers/tracker_featurizers.py”, line 24, in
from rasa.core.featurizers.single_state_featurizer import SingleStateFeaturizer
File “/opt/venv/lib/python3.10/site-packages/rasa/core/featurizers/single_state_featurizer.py”, line 7, in
from rasa.nlu.extractors.extractor import EntityTagSpec
File “/opt/venv/lib/python3.10/site-packages/rasa/nlu/extractors/extractor.py”, line 30, in
import rasa.utils.train_utils
File “/opt/venv/lib/python3.10/site-packages/rasa/utils/train_utils.py”, line 31, in
from rasa.utils.tensorflow.callback import RasaTrainingLogger, RasaModelCheckpoint
File “/opt/venv/lib/python3.10/site-packages/rasa/utils/tensorflow/callback.py”, line 5, in
import tensorflow as tf
File “/opt/venv/lib/python3.10/site-packages/tensorflow/init.py”, line 37, in
from tensorflow.python.tools import module_util as _module_util
File “/opt/venv/lib/python3.10/site-packages/tensorflow/python/init.py”, line 37, in
from tensorflow.python.eager import context
File “/opt/venv/lib/python3.10/site-packages/tensorflow/python/eager/context.py”, line 29, in
from tensorflow.core.framework import function_pb2
File “/opt/venv/lib/python3.10/site-packages/tensorflow/core/framework/function_pb2.py”, line 16, in
from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2
File “/opt/venv/lib/python3.10/site-packages/tensorflow/core/framework/attr_value_pb2.py”, line 16, in
from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2
File “/opt/venv/lib/python3.10/site-packages/tensorflow/core/framework/tensor_pb2.py”, line 16, in
from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2
File “/opt/venv/lib/python3.10/site-packages/tensorflow/core/framework/resource_handle_pb2.py”, line 16, in
from tensorflow.core.framework import tensor_shape_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2
File “/opt/venv/lib/python3.10/site-packages/tensorflow/core/framework/tensor_shape_pb2.py”, line 36, in
_descriptor.FieldDescriptor(
File “/opt/venv/lib/python3.10/site-packages/google/protobuf/descriptor.py”, line 561, in new
_message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
- Downgrade the protobuf package to 3.20.x or lower.
- Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
More information: Changes announced May 6, 2022 | Protocol Buffers Documentation
Hi Team, any solution for the above issue? The command ‘/bin/bash -o pipefail -c rasa train --force’ returned a non-zero code: 1