Itβs hundreds and hundreds of lines, it doesnβt even fit in my command line historyβ¦ how can I paste all the log here?
Below are the last few lines of the log:
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=cmss10:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-BoldItalic.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Display' (DejaVuSansDisplay.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmmi10' (cmmi10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmss10' (cmss10.ttf) normal normal 400 normal>) = 0.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneral.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif Display' (DejaVuSerifDisplay.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-BoldOblique.ttf) oblique normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmb10' (cmb10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmr10' (cmr10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Oblique.ttf) oblique normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmex10' (cmex10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Italic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFiveSym' (STIXSizFiveSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmsy10' (cmsy10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Oblique.ttf) oblique normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-BoldOblique.ttf) oblique normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniIta.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmtt10' (cmtt10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralItalic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUni.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=cmss10:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to cmss10 ('/usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/cmss10.ttf') with score of 0.050000.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=cmex10:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-BoldItalic.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Display' (DejaVuSansDisplay.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmmi10' (cmmi10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmss10' (cmss10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneral.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif Display' (DejaVuSerifDisplay.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-BoldOblique.ttf) oblique normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmb10' (cmb10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmr10' (cmr10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Oblique.ttf) oblique normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmex10' (cmex10.ttf) normal normal 400 normal>) = 0.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Italic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFiveSym' (STIXSizFiveSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmsy10' (cmsy10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Oblique.ttf) oblique normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-BoldOblique.ttf) oblique normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniIta.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmtt10' (cmtt10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralItalic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUni.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=cmex10:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to cmex10 ('/usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/cmex10.ttf') with score of 0.050000.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-BoldItalic.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Display' (DejaVuSansDisplay.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans.ttf) normal normal 400 normal>) = 0.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmmi10' (cmmi10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmss10' (cmss10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneral.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif Display' (DejaVuSerifDisplay.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-BoldOblique.ttf) oblique normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmb10' (cmb10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmr10' (cmr10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Oblique.ttf) oblique normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmex10' (cmex10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Bold.ttf) normal normal bold normal>) = 0.33499999999999996
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Italic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFiveSym' (STIXSizFiveSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmsy10' (cmsy10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Oblique.ttf) oblique normal 400 normal>) = 1.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-BoldOblique.ttf) oblique normal bold normal>) = 1.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniIta.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmtt10' (cmtt10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralItalic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUni.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('/usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf') with score of 0.050000.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans:style=italic:variant=normal:weight=normal:stretch=normal:size=10.0.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBolIta.ttf) italic normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymReg.ttf) normal normal regular normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-BoldItalic.ttf) italic normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Display' (DejaVuSansDisplay.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans.ttf) normal normal 400 normal>) = 1.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymReg.ttf) normal normal regular normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmmi10' (cmmi10.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymBol.ttf) normal normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmss10' (cmss10.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneral.ttf) normal normal regular normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif Display' (DejaVuSerifDisplay.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-BoldOblique.ttf) oblique normal bold normal>) = 10.434999999999999
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmb10' (cmb10.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymReg.ttf) normal normal regular normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Bold.ttf) normal normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmr10' (cmr10.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Oblique.ttf) oblique normal 400 normal>) = 10.15
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmex10' (cmex10.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBol.ttf) normal normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymBol.ttf) normal normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymBol.ttf) normal normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymReg.ttf) normal normal regular normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBol.ttf) normal normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Bold.ttf) normal normal bold normal>) = 1.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBolIta.ttf) italic normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Italic.ttf) italic normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFiveSym' (STIXSizFiveSymReg.ttf) normal normal regular normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmsy10' (cmsy10.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Oblique.ttf) oblique normal 400 normal>) = 0.15000000000000002
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-BoldOblique.ttf) oblique normal bold normal>) = 0.43499999999999994
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniIta.ttf) italic normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymBol.ttf) normal normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Bold.ttf) normal normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmtt10' (cmtt10.ttf) normal normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralItalic.ttf) italic normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUni.ttf) normal normal regular normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans:style=italic:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('/usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Oblique.ttf') with score of 0.150000.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans:style=normal:variant=normal:weight=bold:stretch=normal:size=10.0.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBolIta.ttf) italic normal bold normal>) = 11.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymReg.ttf) normal normal regular normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-BoldItalic.ttf) italic normal bold normal>) = 11.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Display' (DejaVuSansDisplay.ttf) normal normal 400 normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans.ttf) normal normal 400 normal>) = 0.33499999999999996
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymReg.ttf) normal normal regular normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono.ttf) normal normal 400 normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmmi10' (cmmi10.ttf) normal normal 400 normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymBol.ttf) normal normal bold normal>) = 10.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmss10' (cmss10.ttf) normal normal 400 normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneral.ttf) normal normal regular normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif Display' (DejaVuSerifDisplay.ttf) normal normal 400 normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-BoldOblique.ttf) oblique normal bold normal>) = 11.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmb10' (cmb10.ttf) normal normal 400 normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymReg.ttf) normal normal regular normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Bold.ttf) normal normal bold normal>) = 10.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmr10' (cmr10.ttf) normal normal 400 normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Oblique.ttf) oblique normal 400 normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmex10' (cmex10.ttf) normal normal 400 normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBol.ttf) normal normal bold normal>) = 10.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymBol.ttf) normal normal bold normal>) = 10.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymBol.ttf) normal normal bold normal>) = 10.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymReg.ttf) normal normal regular normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif.ttf) normal normal 400 normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBol.ttf) normal normal bold normal>) = 10.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Bold.ttf) normal normal bold normal>) = 0.0
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans:style=normal:variant=normal:weight=bold:stretch=normal:size=10.0 to DejaVu Sans ('/usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Bold.ttf') with score of 0.000000.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans Mono:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-BoldItalic.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Display' (DejaVuSansDisplay.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono.ttf) normal normal 400 normal>) = 0.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmmi10' (cmmi10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmss10' (cmss10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneral.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif Display' (DejaVuSerifDisplay.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-BoldOblique.ttf) oblique normal bold normal>) = 1.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmb10' (cmb10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Bold.ttf) normal normal bold normal>) = 0.33499999999999996
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmr10' (cmr10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Oblique.ttf) oblique normal 400 normal>) = 1.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmex10' (cmex10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Italic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFiveSym' (STIXSizFiveSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmsy10' (cmsy10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Oblique.ttf) oblique normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-BoldOblique.ttf) oblique normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniIta.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmtt10' (cmtt10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralItalic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUni.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans Mono:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans Mono ('/usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono.ttf') with score of 0.050000.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans Display:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0.
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-BoldItalic.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Display' (DejaVuSansDisplay.ttf) normal normal 400 normal>) = 0.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmmi10' (cmmi10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmss10' (cmss10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneral.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif Display' (DejaVuSerifDisplay.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-BoldOblique.ttf) oblique normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmb10' (cmb10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeOneSym' (STIXSizOneSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmr10' (cmr10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans Mono' (DejaVuSansMono-Oblique.ttf) oblique normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmex10' (cmex10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFourSym' (STIXSizFourSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeTwoSym' (STIXSizTwoSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralBolIta.ttf) italic normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Italic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeFiveSym' (STIXSizFiveSymReg.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmsy10' (cmsy10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-Oblique.ttf) oblique normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Sans' (DejaVuSans-BoldOblique.ttf) oblique normal bold normal>) = 11.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUniIta.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXSizeThreeSym' (STIXSizThreeSymBol.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'DejaVu Serif' (DejaVuSerif-Bold.ttf) normal normal bold normal>) = 10.335
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'cmtt10' (cmtt10.ttf) normal normal 400 normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXGeneral' (STIXGeneralItalic.ttf) italic normal 400 normal>) = 11.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: score(<Font 'STIXNonUnicode' (STIXNonUni.ttf) normal normal regular normal>) = 10.05
2020-02-24 10:08:49 DEBUG matplotlib.font_manager - findfont: Matching :family=DejaVu Sans Display:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans Display ('/usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansDisplay.ttf') with score of 0.050000.
2020-02-24 10:08:49 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:49 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:49 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:49 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:49 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:49 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03,
2.e+04, 3.e+04, 4.e+04, 5.e+04, 6.e+04, 7.e+04, 8.e+04, 9.e+04])
2020-02-24 10:08:49 DEBUG matplotlib.backends.backend_pdf - Embedding font /usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf.
2020-02-24 10:08:49 DEBUG matplotlib.backends.backend_pdf - Writing TrueType font.
2020-02-24 10:08:54 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:54 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:54 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:54 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:54 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:54 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03,
2.e+04, 3.e+04, 4.e+04, 5.e+04, 6.e+04, 7.e+04, 8.e+04, 9.e+04])
2020-02-24 10:08:54 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:54 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:54 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:54 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:54 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:54 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03,
2.e+04, 3.e+04, 4.e+04, 5.e+04, 6.e+04, 7.e+04, 8.e+04, 9.e+04])
2020-02-24 10:08:58 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:58 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:58 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:58 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:58 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:58 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03,
2.e+04, 3.e+04, 4.e+04, 5.e+04, 6.e+04, 7.e+04, 8.e+04, 9.e+04])
2020-02-24 10:08:58 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:58 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:58 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:58 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:08:58 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:08:58 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03,
2.e+04, 3.e+04, 4.e+04, 5.e+04, 6.e+04, 7.e+04, 8.e+04, 9.e+04])
2020-02-24 10:09:02 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:02 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:09:02 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:02 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:09:02 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:02 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03,
2.e+04, 3.e+04, 4.e+04, 5.e+04, 6.e+04, 7.e+04, 8.e+04, 9.e+04])
2020-02-24 10:09:02 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:02 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:09:02 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:02 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:09:02 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:02 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03,
2.e+04, 3.e+04, 4.e+04, 5.e+04, 6.e+04, 7.e+04, 8.e+04, 9.e+04])
2020-02-24 10:09:02 DEBUG matplotlib.backends.backend_pdf - Assigning font /b'F1' = '/usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf'
2020-02-24 10:09:08 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:08 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:09:08 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:08 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:09:08 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:08 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03,
2.e+04, 3.e+04, 4.e+04, 5.e+04, 6.e+04, 7.e+04, 8.e+04, 9.e+04])
2020-02-24 10:09:08 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:08 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:09:08 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:08 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04])
2020-02-24 10:09:08 DEBUG matplotlib.ticker - vmin 1.0 vmax 652.0
2020-02-24 10:09:08 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03,
2.e+04, 3.e+04, 4.e+04, 5.e+04, 6.e+04, 7.e+04, 8.e+04, 9.e+04])
2020-02-24 10:09:08 DEBUG matplotlib.backends.backend_pdf - Embedding font /usr/local/lib/python3.6/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf.
2020-02-24 10:09:08 DEBUG matplotlib.backends.backend_pdf - Writing TrueType font.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/dialogue/stories.md' is 'unk'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/dialogue/stories_basic.md' is 'unk'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/dialogue/stories_extra.md' is 'unk'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/dialogue/stories_test.md' is 'unk'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/dialogue/stories_training.md' is 'unk'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/nlu.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.acquaintance.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.age.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.annoying.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.answer_my_question.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.bad.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.be_clever.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.beautiful.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.birth_date.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.boring.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.boss.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.busy.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.can_you_help.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.chatbot.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.clever.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.crazy.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.fired.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.funny.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.good.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.happy.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.hobby.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.hungry.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.marry_user.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.my_friend.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.name.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.occupation.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.origin.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.ready.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.real.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.residence.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.right.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.sure.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.talk_to_me.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.there.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/agent.what_can_do.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/appraisal.bad.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/appraisal.good.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/appraisal.no_problem.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/appraisal.thank_you.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/appraisal.welcome.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/appraisal.well_done.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/confirmation.cancel.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/confirmation.no.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/confirmation.yes.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/dialog.hold_on.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/dialog.hug.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/dialog.i_do_not_care.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/dialog.sorry.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/dialog.what_do_you_mean.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/dialog.wrong.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/emotions.ha_ha.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/emotions.wow.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.bye.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.goodevening.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.goodmorning.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.goodnight.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.hello.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.how_are_you.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.nice_to_meet_you.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.nice_to_see_you.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.nice_to_talk_to_you.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/greetings.whatsup.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.angry.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.back.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.bored.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.busy.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.can_not_sleep.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.does_not_want_to_talk.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.excited.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.going_to_bed.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.good.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.happy.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.has_birthday.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.here.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.joking.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.likes_agent.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.lonely.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.looks_like.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.loves_agent.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.misses_agent.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.needs_advice.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.sad.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.sleepy.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.testing_agent.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.tired.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.waits.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.wants_to_see_agent_again.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.wants_to_talk.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.nlu.training_data.loading - Training data format of 'data/nlu/smalltalk/user.will_be_back.md' is 'md'.
2020-02-24 10:09:09 DEBUG rasa.model - Extracted model to '/tmp/tmpucmn1ob4'.
2020-02-24 10:09:09 INFO absl - Using /tmp/tfhub_modules to cache modules.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/963a7a83964f4719a4b9ca735dfa0690_agent.acquaintance.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/1442bfe71c54467cb04cfb10078cf3a4_agent.age.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/d16830a2da09450186c2864fa8c195f0_agent.annoying.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/741c320392dd4bf1ab082226e4bf28c5_agent.answer_my_question.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/7b9b758329554fcab81d2123df6ac45f_agent.bad.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/e6089ddd6b634f4da054b09dbe22c9a0_agent.be_clever.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/a6366bff828b417488c0d35bd97005da_agent.beautiful.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/0777936f25ce43ffb261da43085b0dff_agent.birth_date.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/9673ecb3e83b4bd09fd79a21ca8ebeff_agent.boring.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/03106926e4bc47228888c4576c0d04b1_agent.boss.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/6f66406652ae4820bcfce66a63459f35_agent.busy.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/048ba04552a14b738be0069d46a12c35_agent.can_you_help.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/80a8b3c160724b96bc6e66bc1c2a6607_agent.chatbot.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/747d596fc992419da53d39e89a5ba44f_agent.clever.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/395ff84008264088af05faa7879334b7_agent.crazy.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/4517b3d28265476f8ef9390bc21f4036_agent.fired.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/7b3c61ecb660416980bfb5eb30028b26_agent.funny.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/80fb9cc62d094c3694fe3eb5af4406b9_agent.good.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/96033c1c4cbb473f8c2adf669ab87a32_agent.happy.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/9c05f139c60148d998ccdfb8e8825696_agent.hobby.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/555fc9f8c8cf4227a9c3065f9b8105b6_agent.hungry.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/401449c02d2a4140930977a948798a5b_agent.marry_user.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/19291c19435e49eaa910f0f82f65d69d_agent.my_friend.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/fe6f95405b4e4f76aeb69053e058645d_agent.name.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/05f75923dd2f4bf2a36a456f49bdc1cf_agent.occupation.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/a68e561ad1eb42358c3db82d418ce222_agent.origin.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/1dec57b672b94d9e9198a1fc4a874ad8_agent.ready.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/528a44acbb0c4edc88df92a7605057d7_agent.real.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/13fd78c6981f40199db1340f0135e47d_agent.residence.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/5d69e4410b4b46e7b19934d9af1f4a83_agent.right.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/8040e627fb8e44f1a231d4ed0ef5dd25_agent.sure.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/11f4513a4ee240cd90db2505b78ef3fe_agent.talk_to_me.md' is 'md'.
2020-02-24 10:09:17 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/bb575c6fcecd487b91258f558e1e8d23_agent.there.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/c984eef37e4d42449e491f309a74483e_agent.what_can_do.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/bc10854fe292499fae47b75ba8e10c0d_appraisal.bad.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/a953bc0c7c0544db950ae42447754993_appraisal.good.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/506b822765e54f51a0c0c2c5f18c5ddc_appraisal.no_problem.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/1827fdde628448ad960019724be5ae6b_appraisal.thank_you.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/89836f76ef43459292a11bb4a99a4678_appraisal.welcome.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/d99793e9b06746729e07500e9d8243b2_appraisal.well_done.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/2b6297cb39a1483090be372d10b1b9d4_confirmation.cancel.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/bc6ee961cd6d46009ac285f2e7f30773_confirmation.no.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/f6a24ff9ab904837b3a9414cc7efe3fd_confirmation.yes.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/81c58c16f050446389c835c088dea9cc_dialog.hold_on.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/32bb99f68b6544bb9189962451804359_dialog.hug.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/67a5717632a54648b7a9c04bfe54920f_dialog.i_do_not_care.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/d1239360c23a4b4f8f884cf72ae4e85c_dialog.sorry.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/4507fe31e2ca47458aefde94df0a4af1_dialog.what_do_you_mean.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/b2247b0919ad4c82993b95a2600a8c6b_dialog.wrong.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/ef6d9ade21874666b99824dbc58ae8ea_emotions.ha_ha.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/c010f69e51d94e819495602f4d0646d8_emotions.wow.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/1a13d2e4cc674f43ab5995b81e92ef2c_greetings.bye.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/91f0c39a766a4e7bb5f12d77fb196b17_greetings.goodevening.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/6d6814d4c1dc437ab09bc3c3e2c076ae_greetings.goodmorning.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/00435c6d7488412287ff70a84d9728bd_greetings.goodnight.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/513885ad7a8d49c0b621077332525ee1_greetings.hello.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/0c77bea8689a4492972a4c79f618bbdb_greetings.how_are_you.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/02b22ce5495f4b6aacdfd28e3682f1a4_greetings.nice_to_meet_you.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/dba4dfd3f81c40de8b6c4df42f1de58d_greetings.nice_to_see_you.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/eff5525128d349a1997755f01ae2a928_greetings.nice_to_talk_to_you.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/537d4d0c29854573a98d87f7ca399472_greetings.whatsup.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/9d9ae95206504394b266cdcaedca9d67_nlu.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/8f06fc3daa5745448fd226e6522d8c1e_user.angry.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/7e0a3eedcdc346c8abdd708a068ae3e7_user.back.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/663e80b0484d43be970c3e4c7dedb3f9_user.bored.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/21c39a43303d43dcb187427eabbd0394_user.busy.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/23609ddc99d44674a4dcfea301637301_user.can_not_sleep.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/df3fd4cec5ce427da10fc8939421b7eb_user.does_not_want_to_talk.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/0cdf631161e34261a1f8800c135d4baa_user.excited.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/8eb3ce7845b946898d7ab582b2aa014b_user.going_to_bed.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/83b70f9cc5eb4e2bb9080ea23d4ebe23_user.good.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/b966525d40a343518ac29c8c85986669_user.happy.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/23820ec18454462c978863954d00c689_user.has_birthday.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/5d7007e64fcf436a9c9b9894deed14a7_user.here.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/9da48924d3dd455b919258f03fce3ae1_user.joking.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/476c1275935f45e99aa9da9411b0a6d9_user.likes_agent.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/f8d0051b78404bd5b1587089876a0d3d_user.lonely.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/5bf2735082e94d38a9ffc1cc578df5d6_user.looks_like.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/aff0b4d3c2a34cff9d2cd5d512ca9d5a_user.loves_agent.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/1614f49559da470684476b2bed04912e_user.misses_agent.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/b9ee9684a9a24ccba39d01255bd8c31f_user.needs_advice.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/0385c388aaeb4d009c5499b1a1e1c277_user.sad.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/26949dc8c4224db18cfbe31bd01b3feb_user.sleepy.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/d73a615cb4524cc9804749d8c5c4e6bd_user.testing_agent.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/ebc13cba2ff840c8bc2bb4ef4ee1ef2e_user.tired.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/f19f41c26faa4cc5a1cc568c5464a0ea_user.waits.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/34acb7c27e0e4ea6ba931f683bb9bcd4_user.wants_to_see_agent_again.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/c2a79fd5491a4c73b7f70429f4fae537_user.wants_to_talk.md' is 'md'.
2020-02-24 10:09:18 DEBUG rasa.nlu.training_data.loading - Training data format of '/tmp/tmpxng80ty7/323955e4576e416584012f4aa99ae3d0_user.will_be_back.md' is 'md'.
2020-02-24 10:09:18 INFO rasa.nlu.test - Running model for predictions:
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2449/2449 [00:43<00:00, 56.62it/s]
2020-02-24 10:10:01 INFO rasa.nlu.test - Intent evaluation results:
2020-02-24 10:10:01 INFO rasa.nlu.test - Intent Evaluation: Only considering those 2449 examples that have a defined intent out of 2449 examples
2020-02-24 10:10:01 INFO rasa.nlu.test - Classification report saved to results/intent_report.json.
2020-02-24 10:10:01 INFO rasa.nlu.test - Incorrect intent predictions saved to results/intent_errors.json.
2020-02-24 10:10:01 DEBUG rasa.nlu.test -
These intent examples could not be classified correctly:
[{'text': 'what are you upto?', 'intent': 'agent.acquaintance', 'intent_prediction': {'name': 'greetings.whatsup', 'confidence': 0.5551027655601501}}, {'text': 'brilliant', 'intent': 'agent.clever', 'intent_prediction': {'name': 'appraisal.good', 'confidence': 0.4388422966003418}}, {'text': 'speak with me', 'intent': 'agent.talk_to_me', 'intent_prediction': {'name': 'user.wants_to_talk', 'confidence': 0.5329943895339966}}, {'text': 'what can you do for me?', 'intent': 'agent.what_can_do', 'intent_prediction': {'name': 'agent.acquaintance', 'confidence': 0.7208907604217529}}, {'text': 'good', 'intent': 'appraisal.good', 'intent_prediction': {'name': 'user.good', 'confidence': 0.49830812215805054}}, {'text': 'nice', 'intent': 'appraisal.good', 'intent_prediction': {'name': 'agent.good', 'confidence': 0.6217567324638367}}, {'text': 'amazing', 'intent': 'appraisal.good', 'intent_prediction': {'name': 'appraisal.well_done', 'confidence': 0.4023098647594452}}, {'text': 'marvelous', 'intent': 'appraisal.good', 'intent_prediction': {'name': 'appraisal.well_done', 'confidence': 0.50665682554245}}, {'text': 'splendid', 'intent': 'appraisal.good', 'intent_prediction': {'name': 'appraisal.well_done', 'confidence': 0.48590222001075745}}, {'text': 'so nice of you', 'intent': 'appraisal.thank_you', 'intent_prediction': {'name': 'appraisal.good', 'confidence': 0.5358421206474304}}, {'text': 'fantastic', 'intent': 'appraisal.well_done', 'intent_prediction': {'name': 'appraisal.good', 'confidence': 0.4823855757713318}}, {'text': 'brilliant', 'intent': 'appraisal.well_done', 'intent_prediction': {'name': 'appraisal.good', 'confidence': 0.4388422966003418}}, {'text': 'coool', 'intent': 'confirmation.yes', 'intent_prediction': {'name': 'agent.good', 'confidence': 0.7931346297264099}}, {'text': 'amazing', 'intent': 'emotions.wow', 'intent_prediction': {'name': 'appraisal.well_done', 'confidence': 0.4023098647594452}}, {'text': "I'm glad to see you", 'intent': 'greetings.nice_to_see_you', 'intent_prediction': {'name': 'user.happy', 'confidence': 0.5028986930847168}}, {'text': "It's boring", 'intent': 'user.bored', 'intent_prediction': {'name': 'agent.boring', 'confidence': 0.630631685256958}}, {'text': "It's good", 'intent': 'user.good', 'intent_prediction': {'name': 'appraisal.good', 'confidence': 0.5598580837249756}}, {'text': "I'm here", 'intent': 'user.here', 'intent_prediction': {'name': 'user.back', 'confidence': 0.6181103587150574}}]
2020-02-24 10:10:01 DEBUG matplotlib.colorbar - locator: <matplotlib.colorbar._ColorbarLogLocator object at 0x7fa618f60b00>
2020-02-24 10:10:01 DEBUG matplotlib.colorbar - Using auto colorbar locator on colorbar
2020-02-24 10:10:01 DEBUG matplotlib.colorbar - locator: <matplotlib.colorbar._ColorbarLogLocator object at 0x7fa618f60b00>
2020-02-24 10:10:01 DEBUG matplotlib.colorbar - Setting pcolormesh
2020-02-24 10:10:01 INFO rasa.nlu.test - Confusion matrix, without normalization:
[[22 0 0 ... 0 0 0]
[ 0 21 0 ... 0 0 0]
[ 0 0 20 ... 0 0 0]
...
[ 0 0 0 ... 62 0 0]
[ 0 0 0 ... 0 7 0]
[ 0 0 0 ... 0 0 19]]
2020-02-24 10:10:10 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:10 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:10 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:10 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:10 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:10 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])
2020-02-24 10:10:10 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:10 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:10 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:10 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:10 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:10 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])
2020-02-24 10:10:15 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:15 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:15 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:15 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:15 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:15 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])
2020-02-24 10:10:15 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:15 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:15 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:15 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:15 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:15 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])
2020-02-24 10:10:19 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:19 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:19 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:19 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:19 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:19 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])
2020-02-24 10:10:19 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:19 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:19 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:19 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:19 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:19 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])
2020-02-24 10:10:23 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:23 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:23 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:23 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:23 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:23 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])
2020-02-24 10:10:23 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:23 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:23 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:23 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:23 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:23 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])
2020-02-24 10:10:30 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:30 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:30 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:30 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:30 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:30 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])
2020-02-24 10:10:30 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:30 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:30 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:30 DEBUG matplotlib.ticker - ticklocs array([1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])
2020-02-24 10:10:30 DEBUG matplotlib.ticker - vmin 1.0 vmax 88.0
2020-02-24 10:10:30 DEBUG matplotlib.ticker - ticklocs array([2.e-01, 3.e-01, 4.e-01, 5.e-01, 6.e-01, 7.e-01, 8.e-01, 9.e-01,
2.e+00, 3.e+00, 4.e+00, 5.e+00, 6.e+00, 7.e+00, 8.e+00, 9.e+00,
2.e+01, 3.e+01, 4.e+01, 5.e+01, 6.e+01, 7.e+01, 8.e+01, 9.e+01,
2.e+02, 3.e+02, 4.e+02, 5.e+02, 6.e+02, 7.e+02, 8.e+02, 9.e+02,
2.e+03, 3.e+03, 4.e+03, 5.e+03, 6.e+03, 7.e+03, 8.e+03, 9.e+03])