Hi guys,
I am sharing my rasa nlu model’s cross validation evaluation result. I think my model is over fitting. Can you please have a look and suggest, how can we avoid this.
-
2018-10-24 16:48:52 INFO rasa_nlu.classifiers.embedding_intent_classifier - Finished training
-
embedding policy, loss=0.009, train accuracy=1.000
-
2018-10-24 16:48:52 INFO rasa_nlu.model - Finished training component.
-
2018-10-24 16:48:56 INFO main - CV evaluation (n=10)
-
2018-10-24 16:48:56 INFO main - Intent evaluation results
-
2018-10-24 16:48:56 INFO main - train Accuracy: 1.000 (0.000)
-
2018-10-24 16:48:56 INFO main - train Precision: 1.000 (0.000)
-
2018-10-24 16:48:56 INFO main - train F1-score: 1.000 (0.000)
-
2018-10-24 16:48:56 INFO main - test Accuracy: 0.940 (0.020)
-
2018-10-24 16:48:56 INFO main - test Precision: 0.978 (0.012)
-
2018-10-24 16:48:56 INFO main - test F1-score: 0.952 (0.016)
-
2018-10-24 16:48:56 INFO main - Entity evaluation results
-
2018-10-24 16:48:56 INFO main - Entity extractor: ner_crf
-
2018-10-24 16:48:56 INFO main - train Accuracy: 1.000 (0.000)
-
2018-10-24 16:48:56 INFO main - train Precision: 1.000 (0.000)
-
2018-10-24 16:48:56 INFO main - train F1-score: 1.000 (0.000)
-
2018-10-24 16:48:56 INFO main - Entity extractor: ner_crf
-
2018-10-24 16:48:56 INFO main - test Accuracy: 0.996 (0.004)
-
2018-10-24 16:48:56 INFO main - test Precision: 0.996 (0.004)
-
2018-10-24 16:48:56 INFO main - test F1-score: 0.996 (0.004)
-
2018-10-24 16:48:56 INFO main - Finished evaluation
-
And my input details
-
INFO:rasa_nlu.training_data.training_data:Training data stats:
-
- intent examples: 796 (8 distinct intents)
-
- Found intents: 'affirm', 'greet', 'enter_data', 'what_is_your_name', 'goodbye', 'order', 'are_you_a_robot', 'ask_howdoing'
-
- entity examples: 644 (3 distinct entities)
-
- found entities: 'phoneNumber', 'email', 'product'
Thanks