MemoryError: Unable to allocate array with shape (1000, 1369, 1369) and data type float32 during train large nlu data.
Nlu data size = 5.5mb
Machine size =
total used free shared buff/cache available
Mem: 31G 10G 19G 16M 1.3G 20G
Swap: 0B 0B 0B
when I start training Nlu data Memory size decreases as
total - 31G used - 10G free - 19G shared - 16M buff/cache - 1.3G available - 20G
total - 31G used - 19G free - 10G shared - 16M buff/cache - 1.3G available - 20G
total - 31G used - 26G free - 3.4G shared - 16M buff/cache - 1.3G available - 20G
total - 31G used - 28G free - 840M shared - 16M buff/cache - 1.3G available - 20G
can you tell me why memory decreases in this ratio.
NLU version = 0.13.7
Pipeline used -
- name: tokenizer_whitespace
- name: intent_entity_featurizer_regex
- name: ner_crf
- name: intent_featurizer_count_vectors analyzer: ‘word’ min_ngram: 1 # int max_ngram: 2 # int
- name: intent_classifier_tensorflow_embedding epochs: 100 language: en
According to this https://medium.com/rasa-blog/supervised-word-vectors-from-scratch-in-rasa-nlu-6daf794efcd8* 6000 labeled utterances took up just 120 Mb.