Hi, I am training a model with the below config:
language: en
pipeline:
- name: WhitespaceTokenizer
- name: RegexFeaturizer
- name: LexicalSyntacticFeaturizer
- name: CountVectorsFeaturizer
analyzer: char_wb
min_ngram: 1
max_ngram: 4
- name: DIETClassifier
epochs: 100
constrain_similarities: true
random_seed: 42
- name: EntitySynonymMapper
- name: ResponseSelector
epochs: 100
constrain_similarities: true
random_seed: 42
- name: FallbackClassifier
threshold: 0.1
ambiguity_threshold: 0.05
policies:
- name: MemoizationPolicy
random_seed: 42
- name: TEDPolicy
max_history: 10
epochs: 100
constrain_similarities: true
random_seed: 42
- name: RulePolicy
random_seed: 42
I get different results(trained models) on i7 and i9 machines. Any idea why?
Thanks!