Hi there. I’m trying to use a pretrained sentiment component nltk mention in thi tutorial How to Enhance Rasa NLU Models with Custom Components | Rasa Blog | The Rasa Blog | Rasa but when i run rasa train I have this error
Traceback (most recent call last):
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\runpy.py", line 192, in _run_module_as_main
return _run_code(code, main_globals, None,
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\FARES\anaconda3\envs\rasa2.8\Scripts\rasa.exe\__main__.py", line 7, in <module>
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\__main__.py", line 117, in main
cmdline_arguments.func(cmdline_arguments)
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\cli\train.py", line 59, in <lambda>
train_parser.set_defaults(func=lambda args: run_training(args, can_exit=True))
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\cli\train.py", line 91, in run_training
training_result = train_all(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\api.py", line 109, in train
return rasa.utils.common.run_in_loop(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\utils\common.py", line 296, in run_in_loop
result = loop.run_until_complete(f)
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\asyncio\base_events.py", line 608, in run_until_complete
return future.result()
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\model_training.py", line 108, in train_async
return await _train_async_internal(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\model_training.py", line 288, in _train_async_internal
await _do_training(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\model_training.py", line 352, in _do_training
await _train_core_with_validated_data(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\model_training.py", line 549, in _train_core_with_validated_data
await rasa.core.train.train(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\train.py", line 70, in train
agent.train(training_data, **additional_arguments)
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\agent.py", line 753, in train
self.policy_ensemble.train(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\policies\ensemble.py", line 206, in train
policy.train(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\policies\ted_policy.py", line 676, in train
model_data, label_ids = self._prepare_for_training(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\policies\ted_policy.py", line 570, in _prepare_for_training
tracker_state_features, label_ids, entity_tags = self._featurize_for_training(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\policies\policy.py", line 191, in _featurize_for_training
state_features, label_ids, entity_tags = self.featurizer.featurize_trackers(
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\featurizers\tracker_featurizers.py", line 382, in featurize_trackers
tracker_state_features = self._featurize_states(trackers_as_states, interpreter)
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\featurizers\tracker_featurizers.py", line 103, in _featurize_states
return [
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\featurizers\tracker_featurizers.py", line 104, in <listcomp>
[
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\featurizers\tracker_featurizers.py", line 105, in <listcomp>
self.state_featurizer.encode_state(state, interpreter)
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\featurizers\single_state_featurizer.py", line 281, in encode_state
self._extract_state_features(sub_state, interpreter, sparse=True)
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\featurizers\single_state_featurizer.py", line 249, in _extract_state_features
parsed_message = interpreter.featurize_message(message)
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\core\interpreter.py", line 159, in featurize_message
result = self.interpreter.featurize_message(message)
File "C:\Users\FARES\anaconda3\envs\rasa2.8\lib\site-packages\rasa\nlu\model.py", line 491, in featurize_message
component.process(message, **self.context)
File "E:\act\sentiment.py", line 44, in process
res = sid.polarity_scores(message.Text)
AttributeError: 'Message' object has no attribute 'Text'
I need help please