Can we use both word and character in word count featurizer in rasa

Yes, you can use n-grams for both word and char.

+---------------------------+-------------------------+--------------------------------------------------------------+
| Parameter                 | Default Value           | Description                                                  |
+===========================+=========================+==============================================================+
| use_shared_vocab          | False                   | If set to 'True' a common vocabulary is used for labels      |
|                           |                         | and user message.                                            |
+---------------------------+-------------------------+--------------------------------------------------------------+
| analyzer                  | word                    | Whether the features should be made of word n-gram or        |
|                           |                         | character n-grams. Option 'char_wb' creates character        |
|                           |                         | n-grams only from text inside word boundaries;               |
|                           |                         | n-grams at the edges of words are padded with space.         |
|                           |                         | Valid values: 'word', 'char', 'char_wb'.                     |
+---------------------------+-------------------------+--------------------------------------------------------------+
| strip_accents             | None                    | Remove accents during the pre-processing step.               |
|                           |                         | Valid values: 'ascii', 'unicode', 'None'.                    |
+---------------------------+-------------------------+--------------------------------------------------------------+
| stop_words                | None                    | A list of stop words to use.                                 |
|                           |                         | Valid values: 'english' (uses an internal list of            |
|                           |                         | English stop words), a list of custom stop words, or         |
|                           |                         | 'None'.                                                      |
+---------------------------+-------------------------+--------------------------------------------------------------+
| min_df                    | 1                       | When building the vocabulary ignore terms that have a        |
|                           |                         | document frequency strictly lower than the given threshold.  |
+---------------------------+-------------------------+--------------------------------------------------------------+
| max_df                    | 1                       | When building the vocabulary ignore terms that have a        |
|                           |                         | document frequency strictly higher than the given threshold  |
|                           |                         | (corpus-specific stop words).                                |
+---------------------------+-------------------------+--------------------------------------------------------------+
| min_ngram                 | 1                       | The lower boundary of the range of n-values for different    |
|                           |                         | word n-grams or char n-grams to be extracted.                |
+---------------------------+-------------------------+--------------------------------------------------------------+
| max_ngram                 | 1                       | The upper boundary of the range of n-values for different    |
|                           |                         | word n-grams or char n-grams to be extracted.                |
+---------------------------+-------------------------+--------------------------------------------------------------+
| max_features              | None                    | If not 'None', build a vocabulary that only consider the top |
|                           |                         | max_features ordered by term frequency across the corpus.    |
+---------------------------+-------------------------+--------------------------------------------------------------+
| lowercase                 | True                    | Convert all characters to lowercase before tokenizing.       |
+---------------------------+-------------------------+--------------------------------------------------------------+
| OOV_token                 | None                    | Keyword for unseen words.                                    |
+---------------------------+-------------------------+--------------------------------------------------------------+
| OOV_words                 | []                      | List of words to be treated as 'OOV_token' during training.  |
+---------------------------+-------------------------+--------------------------------------------------------------+
| alias                     | CountVectorFeaturizer   | Alias name of featurizer.                                    |
+---------------------------+-------------------------+--------------------------------------------------------------+
| use_lemma                 | True                    | Use the lemma of words for featurization.                    |
+---------------------------+-------------------------+--------------------------------------------------------------+

Option char_wb creates character n-grams only from text inside word boundaries; n-grams at the edges of words are padded with space. This option can be used to create Subword Semantic Hashing.

For more technical explanations, I suggest you read online articles or watch the Rasa Algorithm Whiteboard.